Loading...
Search for: mixture-fraction
0.012 seconds

    Modeling of Turbulent Combustion at Supercritical Condition, Using Flamelet Based Models

    , M.Sc. Thesis Sharif University of Technology Sarvari, Ali (Author) ; Farshchi, Mohammad (Supervisor)
    Abstract
    Turbulent combustion at supercritical condition have a considerable effect in modern high performance rocket propulsion systems, gas turbines and diesel engines. In such a reaction conditions, an abrupt changes occur in thermodynamics and transport properties of fluid. So numerically modeling of a real fluid behavior of the cryogenic propellants and the turbulent trans-critical mixing and combustion processes faces serious challenges.In this study, in order to realistically represent turbulence–chemistry interactions, detailed chemical kinetics and real-fluid thermodynamic behaviors related to the gaseous hydrogen and cryogenic liquid oxygen combustion under supercritical pressures, the... 

    Numerical simulation of soot formation in a JP combustor using different surrogate fuels

    , Article 2018 Joint Thermophysics and Heat Transfer Conference, 25 June 2018 through 29 June 2018 ; 2018 ; 9781624105524 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Saidi, M. H ; Schneider, G. E ; Sharif University of Technology
    American Institute of Aeronautics and Astronautics Inc, AIAA  2018
    Abstract
    As is known, jet propulsion fuels are rather complex with combustion resulting in a vast range of chemical compounds. So, their real modeling is rather hard and the application of final constructed models is restricted to a narrow band of real propulsion jet fuels. The main objective of this study is to extend suitable surrogate fuel models to reliably predict the combustion and soot characteristics of the equivalent jet propulsion fuel. In this regard, the combustion of proposed surrogate fuels is numerically studied in the above chosen combustion chamber. Of importance, the surrogate fuels should be proposed suitably to represent the correct physical characteristics and the real chemical... 

    Numerical calculation of turbulent reacting flow in a model gas-turbine combustor

    , Article 41st AIAA Thermophysics Conference, 22 June 2009 through 25 June 2009 ; 2009 ; 9781563479755 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    Abstract
    In this work, an efficient bi-implicit strategy is suitably developed within the context of a hybrid finite volume element method to solve axisymmetric turbulent reactive flow in a model gas turbine combustor. Based on the essence of a control-volume-based finite-element method, the formulation benefits from the geometrical flexibility of the finite element methods while the discrete algebraic governing equations are derived through applying the conservation laws to discrete cells distributed in the solution domain. To enhance the efficiency of method, we extend the physical influence upwinding scheme to cylindrical coordinates. This extension helps to improve the advection flux... 

    A novel formulation to solve laminar difiusive flame in the cylindrical coordinates

    , Article 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, 7 January 2008 through 10 January 2008 ; 2008 ; 9781563479373 (ISBN) Darbandi, M ; Ghafourizadeh, M ; Schneider, G. E ; Sharif University of Technology
    2008
    Abstract
    In this work, the conservation forms of the reacting ow governing equations are treated mainly using a cell-centered finite-volume approach with a collocated storage of all trans- port variables. However, the finite volume formulations are suitably incorporated with the finite element expressions. As an innovation, a physical influence upwinding scheme is suitably extended to the cylindrical coordinate system to approximate the convective terms of the governing conservation laws at the cell faces. This treatment firstly respects the physics of flow and secondly provides the necessary coupling of velocity and pressure fields in this frame. The numerical solution of laminar, buoyant difiusion...