Loading...
Search for: moderately-thick-plate
0.004 seconds

    Free vibration analysis of Mindlin plates partially resting on Pasternak foundation

    , Article International Journal of Mechanical Sciences ; Volume 75 , 2013 , Pages 1-7 ; 00207403 (ISSN) Jahromi, H. N ; Aghdam, M. M ; Fallah, A ; Sharif University of Technology
    Abstract
    In this paper, the generalized differential quadrature (GDQ) method is used to study free vibration of moderately thick rectangular plate partially resting on Pasternak foundation. The foundation is considered to support the plate either completely or partially. The governing equations which consist of a system of partial differential equations (PDEs) are obtained based on the first-order shear deformation theory. Various combinations of simply supported, clamped and free boundary conditions are considered. Application of the GDQ method to the governing PDEs resulted in a system of algebraic equations. Solution of this system with accordance to the considered boundary conditions leads to an... 

    Vibration of a Circular plate on Pasternak foundation with variable modulus due to moving mass

    , Article Structural Engineering and Mechanics ; Volume 83, Issue 6 , 2022 , Pages 757-770 ; 12254568 (ISSN) Alile, M. R ; Foyouzat, M. A ; Mofid, M ; Sharif University of Technology
    Techno-Press  2022
    Abstract
    In this paper, the vibration of a moderately thick plate to a moving mass is investigated. Pasternak foundation with a variable subgrade modulus is considered to tackle the shortcomings of Winkler model, and an analytical-numerical solution is proposed based on the eigenfunction expansion method. Parametric studies by using both CPT (Classical Plate Theory) and FSDT (First-Order Shear Deformation Plate Theory) are carried out, and, the differences between them are also highlighted. The obtained results reveal that utilizing FSDT without considering the rotary inertia leads to a smaller deflection in comparison with CPT pertaining to a thin plate, while it demonstrates a greater response for...