Loading...
Search for: modular-multiplier
0.01 seconds

    Fully Homomorphic Encryption Implementation

    , M.Sc. Thesis Sharif University of Technology Heydarian, Mohammad Javad (Author) ; Shabany, Mahdi (Supervisor)
    Abstract
    After being introduced in 2009, the first fully homomorphic encryption (FHE) scheme has created significant excitement in academia and industry. Despite rapid advances in the last 6 years, FHE schemes are still not ready for deployment due to an efficiency bottleneck. Here we introduce a hardware/software codesign, in fact a hardware accelerator optimized for a class of reconfigurable logic to bring homomorphic encryption schemes one step closer to deployment in real-life applications. The accelerator we present is connected via a fast PCIe interface to a CPU platform to provide homomorphic evaluation services to any application that needs to support blinde computations. Specifically we... 

    Hardware architecture for supersingular isogeny diffie-hellman and key encapsulation using a fast montgomery multiplier

    , Article IEEE Transactions on Circuits and Systems I: Regular Papers ; Volume 68, Issue 5 , 2021 , Pages 2042-2050 ; 15498328 (ISSN) Farzam, M. H ; Bayat Sarmadi, S ; Mosanaei Boorani, H ; Alivand, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Public key cryptography lies among the most important bases of security protocols. The classic instances of these cryptosystems are no longer secure when a large-scale quantum computer emerges. These cryptosystems must be replaced by post-quantum ones, such as isogeny-based cryptographic schemes. Supersingular isogeny Diffie-Hellman (SIDH) and key encapsulation (SIKE) are two of the most important such schemes. To improve the performance of these protocols, we have designed several modular multipliers. These multipliers have been implemented for all the prime fields used in SIKE round 3, on a Virtex-7 FPGA, showing a time and area-time product improvement of up to 60.1% and 64.5%,... 

    High-Performance Architecture for Post-Quantum Cryptography Based on Elliptic Curve Isogeny

    , Ph.D. Dissertation Sharif University of Technology Farzam, Mohammad Hossein (Author) ; Bayat Sarmadi, Siavash (Supervisor)
    Abstract
    Public-key cryptography is vital to secure digital communication. The classic instances of these cryptosystems are insecure against large-scale quantum computers. As a result, post-quantum cryptography has emerged as a replacement, which includes different categories. Isogeny-based schemes are one of the promising candidates mainly because of their smaller public key length. Due to high computational cost of such schemes, efficient implementations are significantly important. In this thesis, we have presented various solutions at three different abstraction layers. At the lowest layer, which deals with modular arithmetic, two hardware architectures are presented to perform modular...