Loading...
Search for: molasses
0.01 seconds

    Use of response surface methodology analysis for xanthan biopolymer production by xanthomonas campestris: focus on agitation rate, carbon source, and temperature

    , Article Iranian Journal of Chemistry and Chemical Engineering ; Volume 36, Issue 1 , 2017 , Pages 173-183 ; 10219986 (ISSN) Zakeri, A ; Pazouki, M ; Vossoughi, M ; Sharif University of Technology
    Jihad Danishgahi  2017
    Abstract
    The current study is an attempt to contribute for efficient and cost-effective substrates for xanthan gum production. In this context, the sugar cane molasses wastes can be used as a cheap substrate for xanthan gum production. Xanthan biopolymer production by a novel Xanthomonas campestris strain IBRC-M 10644 was optimized with statistical approaches. Based on the results of Response Surface Methodology (RSM) with Central Composite Design (CCD) technique, a second-order polynomial model was developed and evaluated the effects of variables on the maximum xanthan production. Agitation rate (X1: 200-500 rpm), sugar cane molasses concentration (X2: 30-90 g/L) and operation temperature (X3: 25-35... 

    Treatment of Colored Food Industrial Wastewater by Biological Method (Molasses Wastewater)

    , M.Sc. Thesis Sharif University of Technology Ghaffaripour, Niloofar (Author) ; Alemzadeh, Iran (Supervisor) ; Vosoughi, Manoochehr (Supervisor)
    Abstract
    Disposal of molasses wastewater of Alcohol production and sugar refinery plants into water resources make irreparable damages to the environment. Continuous disposal of this wastewater causes decreases soil quality and destroys agricultural products. Wastewater which is produced from molasses alcoholic fermentation causes numerous environmental issues due to the dark color and high level of organic compounds. Most of these organic compounds can be eliminated by aerobic or anaerobic biological treatments. Nevertheless, the color which is due to the presence of heavy organic compounds, named melanoidin, in wastewater is hardly removed by conventional biological treatments. In this project, the... 

    Chemical Investigation of Molasses and Reducing Sugar Wastes of Molasses in Hakim Farabi Sugar Factory

    , M.Sc. Thesis Sharif University of Technology Mohebbi, Javad (Author) ; Alamolhoda, Ali Asghar (Supervisor) ; Matloubi Moghaddam, Firouz (Supervisor)
    Abstract
    Sugar extraction from cane sugar is based on crystallization. Sucrose crystallization is a mass transfer process. Sucrose molecule's migration from solution to crystal is driven by concentration difference between the mother liquor and the crystal surface; the coefficient of super saturation is the most important parameter for the process. It has large influence on product quantity and quality (crystal yield, crystal size and size distribution). In this project, first the efficiency of sucrose extraction studied by crystallization in HAKIM FARABI sugar factory. Crystal size distribution (CSD) is the more accurate measure for monitoring crystallization processes. CSD depending on the seeds... 

    Producing of Peroxidase Enzymes using Pahnerochaete Chrysosporium for Decolorization of Molasses Wastewater

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Manijheh (Author) ; Alemzadeh, Iran (Supervisor)
    Abstract
    The treatment of water effluent from alcohol industries is among the most challenging industrial wastewater treatments. The challenge mainly arises from the high capacity of organic compounds allowing the growth of microorganisms and pollutants. Brown color of the wastewater also contributes to this phenomenon; it absorbs more sunlight which then reduces the oxygenation of water and thus adversely affecting the aquatic life. Moreover, the acidity of the wastewater decreases the pH level of agricultural soils, so its quality Thus, distillery wastewater, without any treatment can pose a serious threat to the environment. In our study, we investigate the decolorization of molasses wastewater... 

    Investigating the effect of several auxiliary carbon sources in treatment of petroleum deposits by the bacterial strain BBRC9012

    , Article CHISA 2006 - 17th International Congress of Chemical and Process Engineering, Prague, 27 August 2006 through 31 August 2006 ; 2006 ; 8086059456 (ISBN); 9788086059457 (ISBN) Baghban, E ; Roostaazad, R ; Yaghmaei, S ; Sharif University of Technology
    2006
    Abstract
    Effect of several auxiliary carbon sources such as crude oil, different precultures, and quality of adding crude oil in treatment of petroleum wax deposits by an isolated bacterial strain, BBRC9012, was investigated. First and second experiments which compered effect of molasses, glucose and crude oil, indicated that glucose and molasses causes more microbial growth, biosurfactant production and bioemolsification than crude oil. Both optometry and Surface tension measurements showed that using molasses-BHB preculture for wax treatment is not suitable and when crude oil is used as auxiliary carbon source a one day lag phase is unavoidable. It was also shown that when crude oil is added to... 

    The effect of influent COD and upward flow velocity on the behaviour of sulphate-reducing bacteria

    , Article Process Biochemistry ; Volume 40, Issue 7 , 2005 , Pages 2305-2310 ; 13595113 (ISSN) Shayegan, J ; Ghavipanjeh, F ; Mirjafari, P ; Sharif University of Technology
    2005
    Abstract
    The effect of up velocity and influent COD concentration on the activity of sulphate-reducing bacteria (SRB) in UASB reactors is discussed. To study these effects, four UASB reactors were built and utilized in parallel. Examinations were carried out in two different concentrations of molasses (500 mg COD/l and 1000 mg COD/l) and four different upward flow velocities. It was observed that at velocities greater than 1 m/h, SRB bacteria were easily washed out from the reactors due to lower density and lack of ability to form dense and firm granules. It was found that in low-strength wastewaters with a COD to sulphate ratio of 2, an upward velocity in the range of 1.5-2.5 m/h could be... 

    Study the Effect of Carbon Content Exist in Midrex Cold Briquetted Sponge Iron on Melting Performance and Comparison with DRI and HBI

    , M.Sc. Thesis Sharif University of Technology Ranjbar, Hassan (Author) ; Askari, Masoud (Supervisor)
    Abstract
    Midrex sponge iron is an active product and there are several problems with store and export it.Cold briquetting sponge iron method is a new method to protect sponge iron from oxidation and provides the possibility of its storage and transportation. Iran as one of the biggest countries that produce sponge iron, has a lot of sponge iron pilots that equipped with cold briquetted machines,but their production capacity is limited and is about 5 percent of their production capacity. With regard to no need for country to these amount of sponge iron, most of these pilots have to store and transport large volumes of sponge iron and the risk of oxidation and fire threatens these units.By using cold... 

    Modeling and Simulation of Alcoholic Fermentation of Sugarcane Blackstrap Molasses

    , M.Sc. Thesis Sharif University of Technology Soroush, Mohammad (Author) ; Yaghmaee, Sohila (Supervisor)
    Abstract
    Fed-batch fermentation is a valuable and cost-effective method for bio-based production of various products such as ethanol, which has various applications in various industries.In recent years, bioethanol production has been given special attention in many countries. For this reason, the mathematical modeling of production of these products is very important for their optimal and cost-effective production. Given the transient and dynamic nature of fermentation and its specific complexity, mathematical modeling of fed-batch bioreactors is difficult and complicated. In this research, an unstructured model was used to predict the production of ethanol from blackstrap sugar cane molasses based... 

    Anaerobic degradation of molasses stillage in a pilot UASB reactor

    , Article Scientia Iranica ; Volume 12, Issue 3 , 2005 , Pages 255-261 ; 10263098 (ISSN) Hashemian, S. J ; Torkian, A ; Hakimjavadi, M ; Azimi, E ; Sharif University of Technology
    Sharif University of Technology  2005
    Abstract
    The feasibility of a mesophilic anaerobic treatment of an alcohol distillery wastewater (beet molasses stillage) was studied in a 1300 I Upflow Anaerobic Sludge Blanket (UASB) reactor for a period of 180 days. The system was seeded with 600 L of mesophilic anaerobic sludge harvested from the bottom of a dairy anaerobic lagoon. Nutrients were added to acidified effluent and after adjusting the pH in an equalization tank, the system was fed with a diluted effluent containing COD in the range of 1000-11000 mg/L at 30°C. Initially, the system had an OLR of 1 kg COD m-3 d-1 and upflow velocity was maintained at 0.6 m/h (HRT= 6 h) throughout the study. A gradual increase in OLR, through increased... 

    Comparison of two mathematical models for correlating the organic matter removal efficiency with hydraulic retention time in a hybrid anaerobic baffled reactor treating molasses

    , Article Bioprocess and Biosystems Engineering ; Volume 35, Issue 3 , 2012 , Pages 389-397 ; 16157591 (ISSN) Ghaniyari Benis, S ; Martín, A ; Borja, R ; Martin, M. A ; Hedayat, N ; Sharif University of Technology
    Abstract
    A modelling of the anaerobic digestion process of molasses was conducted in a 70-L multistage anaerobic biofilm reactor or hybrid anaerobic baffled reactor with six compartments at an operating temperature of 26 °C. Five hydraulic retention times (6, 16, 24, 72 and 120 h) were studied at a constant influent COD concentration of 10,000 mg/L. Two different kinetic models (one was based on a dispersion model with first-order kinetics for substrate consumption and the other based on a modification of the Young equation) were evaluated and compared to predict the organic matter removal efficiency or fractional conversion. The first-order kinetic constant obtained with the dispersion model was... 

    Ni and Cu recovery by bioleaching from the printed circuit boards of mobile phones in non-conventional medium

    , Article Journal of Environmental Management ; Volume 250 , 2019 ; 03014797 (ISSN) Arshadi, M ; Nili, S ; Yaghmaei, S ; Sharif University of Technology
    Academic Press  2019
    Abstract
    There is a substantial volume of mobile phone waste every year. Due to the disadvantages of traditional methods, it is necessary to look for biological processes that are more eco-friendly and economical to recover metals from e-waste. Fungi provide large amounts of organic acids and dissolve metals but using sucrose in the medium is not economical. In this paper, the main objective is to find a suitable alternative carbon substrate instead of sucrose for fungi bioleaching of Ni and Cu in printed circuit boards (PCBs) of mobile phones using Penicillium simplicissimum. Four kinds of carbon sources (including sucrose, cheese whey, sugar, and sugar cane molasses) were selected. Also, pH and... 

    Fungal bioleaching of e-waste utilizing molasses as the carbon source in a bubble column bioreactor

    , Article Journal of Environmental Management ; Volume 307 , 2022 ; 03014797 (ISSN) Nili, S ; Arshadi, M ; Yaghmaei, S ; Sharif University of Technology
    Academic Press  2022
    Abstract
    Mobile phones are known as the most widely used electronic instruments, and an enormous number of discarded mobile phones are generated. The present work used a pure culture of Penicillium simplicissimum in a bubble column bioreactor to extract Cu and Ni from mobile phone printed circuit boards (MPPCBs) waste. Molasses was used as an efficient carbon source to enhance bioleaching efficiency and increase the cost benefits. The adaptation phase was done at Erlenmeyer flasks to reach 40 g/L of MPPCBs powder. The most significant parameters, including the mass of MPPCBs powder, aeration, molasses concentration, and their interaction, were optimized in order to leach the maximum possible Cu and... 

    Bioelectricity generation enhancement in a dual chamber microbial fuel cell under cathodic enzyme catalyzed dye decolorization

    , Article Bioresource Technology ; Volume 102, Issue 12 , June , 2011 , Pages 6761-6765 ; 09608524 (ISSN) Bakhshian, S ; Kariminia, H. R ; Roshandel, R ; Sharif University of Technology
    2011
    Abstract
    Enzymatic decolorization of reactive blue 221 (RB221) using laccase was investigated in a dual-chamber microbial fuel cell (MFC). Suspended laccase was used in the cathode chamber in the absence of any mediators in order to decolorize RB221 and also improve oxygen reduction reaction in the cathode. Molasses was utilized as low cost and high strength energy source in the anode chamber. The capability of MFC for simultaneous molasses and dye removal was investigated. A decolorization efficiency of 87% was achieved in the cathode chamber and 84% COD removal for molasses was observed in the anode chamber. Laccase could catalyze the removal of RB221 and had positive effect on MFC performance as... 

    Effect of various carbon sources on biomass and lipid production of Chlorella vulgaris during nutrient sufficient and nitrogen starvation conditions

    , Article Bioresource Technology ; Volume 180 , 2015 , Pages 311-317 ; 09608524 (ISSN) Abedini Najafabadi, H ; Malekzadeh, M ; Jalilian, F ; Vossoughi, M ; Pazuki, G ; Sharif University of Technology
    Abstract
    In this research, a two-stage process consisting of cultivation in nutrient rich and nitrogen starvation conditions was employed to enhance lipid production in Chlorella vulgaris algal biomass. The effect of supplying different organic and inorganic carbon sources on cultivation behavior was investigated. During nutrient sufficient condition (stage I), the highest biomass productivity of 0.158. ±. 0.011. g/L/d was achieved by using sodium bicarbonate followed by 0.130. ±. 0.013, 0.111. ±. 0.005 and 0.098. ±. 0.003. g/L/d for sodium acetate, carbon dioxide and molasses, respectively. Cultivation under nitrogen starvation process (stage II) indicated that the lipid and fatty acid content... 

    Anaerobic treatment of synthetic medium-strength wastewater using a multistage biofilm reactor

    , Article Bioresource Technology ; Volume 100, Issue 5 , 2009 , Pages 1740-1745 ; 09608524 (ISSN) Ghaniyari Benis, S ; Borja, R ; Monemian, S. A ; Goodarzi, V ; Sharif University of Technology
    2009
    Abstract
    A laboratory-scale multistage anaerobic biofilm reactor of three compartments with a working volume of 54-L was used for treating a synthetic medium-strength wastewater containing molasses as a carbon source at different influent conditions. The start-up period, stability and performance of this reactor were assessed at mesophilic temperature (35 °C). During the start-up period, pH fluctuations were observed because there was no microbial selection or zoning, but as the experiment progressed, results showed that phase separation had occurred inside the reactor. COD removal percentages of 91.6, 91.6, 90.0 and 88.3 were achieved at organic loading rates of 3.0, 4.5, 6.75 and 9.0 kg COD/m3 day,... 

    Kinetics of organic removal in fixed-bed aerobic biological reactor

    , Article Bioresource Technology ; Volume 99, Issue 5 , 2008 , Pages 1118-1124 ; 09608524 (ISSN) Borghei, S. M ; Sharbatmaleki, M ; Pourrezaie, P ; Borghei, G ; Sharif University of Technology
    2008
    Abstract
    The process kinetics of a lab-scale upflow aerobic immobilized biomass (UAIB) reactor using simulated sugar-manufacturing wastewater as feed was investigated. The experimental unit consisted of a 22 l reactor filled with high porosity pumice stone. The UAIB reactor was tested under different organic loads and different hydraulic retention times (HRT) and the substrate loading removal rate was compared with prediction of Stover-Kincannon model, second-order model and the first order substrate removal model. After obtaining steady-state conditions, organic loading rate was increased from 750 to 4500 g COD/m3 day to resemble wastewater from sugar production lines, and hydraulic retention time...