Loading...
Search for: molecularly-imprinted-polymer--mip
0.006 seconds

    Evaluation of molecular imprinted polymerized methylene blue/aptamer as a novel hybrid receptor for cardiac troponin I (cTnI) detection at glassy carbon electrodes modified with new biosynthesized ZnONPs

    , Article Sensors and Actuators, B: Chemical ; Volume 320 , 1 October , 2020 Mokhtari, Z ; Khajehsharifi, H ; Hashemnia, S ; Solati, Z ; Azimpanah, R ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    In this research, a novel, rapid, and non-immune electrochemical method was used to detect cardiac troponin I (cTnI) using a double recognition approach. Amine terminus cTnI aptamers immobilized on COOH-ZnO nanoparticles (COOH-ZnONPs) modified GCE surface were applied to capture cTnI for imprinting recognition. The COOH-ZnONPs were synthesized in a biological manner. Then, the methylene blue (MB) monomers were electro-polymerized around the cTnI-aptamer complexes. Following the removal of cTnI, cavities were constructed and converted to a new aptamer and molecular imprinted polymer (MIP) hybrid receptor (aptamer/MIP/ZnONPs). FT-IR spectra, SEM images, XRD patterns, and electrochemical... 

    Towards greater mechanical, thermal and chemical stability in solid-phase microextraction

    , Article TrAC - Trends in Analytical Chemistry ; Volume 34 , 2012 , Pages 126-138 ; 01659936 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Naderi, M ; Sharif University of Technology
    Abstract
    Solid-phase microextraction (SPME) is a fast, solvent-free technique, which, since its introduction in the 1990s, has been increasingly applied to sample preparation in analytical chemistry. Conventional SPME fibers are fabricated by making a physical bond between the usual silica substrate and the polymeric coatings. However, some applications are limited, as the lifetime and the stability of conventional SPME fibers cannot meet the demands of analyzing relatively non-volatile compounds with more polar moieties. There have been attempts to analyze less volatile compounds by increasing the thermal, physical and chemical stability of the fibers. In this review, we present some new...