Loading...
Search for: moment-curvature
0.007 seconds

    Behavior of reinforced concrete beams post-tensioned in the critical shear region

    , Article Engineering Structures ; Volume 29, Issue 7 , 2007 , Pages 1465-1474 ; 01410296 (ISSN) Shamsai, M ; Sezen, H ; Khaloo, A. R ; Sharif University of Technology
    2007
    Abstract
    A new shear strengthening method involving post-tensioning of the critical shear region of reinforced concrete beams is investigated. Thirty-one experiments were carried out using 24 specimens. Theoretical load-deflection relations are obtained from moment-curvature analysis using fiber cross sections and taking into consideration the effects of different concrete confinements along the beam length. A theoretical shear strength model that includes three shear resisting components in the critical shear region of the strengthened beams is provided. Experimental results from beams with and without shear strengthening are compared with calculated load-deflection relations and predicted shear... 

    Seismic performance of high-strength concrete square columns confined with carbon fiber reinforced polymers (CFRPs)

    , Article Canadian Journal of Civil Engineering ; Volume 32, Issue 3 , 2005 , Pages 569-578 ; 03151468 (ISSN) Hosseini, A ; Khaloo, A. R ; Fadaee, S ; Sharif University of Technology
    2005
    Abstract
    This paper presents the results of an experimental and analytical study on high-strength, reinforced-concrete (RC) columns with different levels of initial ductility enhanced with carbon fiber reinforced polymer (CFRP) wraps. Six square columns 260 mm wide and 1650 mm long were tested under constant axial load and reversed cyclic lateral load. The test specimens were divided into three groups. Groups I and II were designed and detailed according to the requirements of American Concrete Institute ACI318-02 for intermediate-moment frames. Group I was wrapped with CFRP, group II was control specimens, and group III was designed and detailed according to the requirements of ACI318-02 for... 

    Strengthening design limitations of an RC frames using FRP column wrapping considering column-to-beam strength ratio

    , Article Scientia Iranica ; Volume 14, Issue 5 , 2007 , Pages 405-413 ; 10263098 (ISSN) Khaloo, A. R ; Esmaili, A ; Sharif University of Technology
    Sharif University of Technology  2007
    Abstract
    The aim of this paper is to study the influence of the column-to-beam strength ratio on the seismic strengthening of a column with a Fiber-Reinforced Plastic (FRP) wrapping system. FRP wrapped Reinforced Concrete (RC) columns are analyzed to obtain moment-curvature curves using FRP confined concrete characteristics. A pushover analysis of a 2D model was performed on one and three-story moment-resisting frames, with different column-to-beam strength ratios. The results indicate that FRP strengthening is more efficient in frames with a low ratio of column-to-beam strength, due to the type of lateral failure mechanism of the frame. Also, high values of the column-to-beam strength ratio can be... 

    Influence of Compressive GFRP bars on Flexural Performance of Reinforced Concrete Beams

    , M.Sc. Thesis Sharif University of Technology Hassanpour, Sina (Author) ; Khaloo, Alireza (Supervisor)
    Abstract
    This study inspects the flexural response of RC beams at the presence of compressive GFRP bars as well as tensile bars. Total of 9 reinforced beams were investigated. Three values of tensile reinforcement percentage were considered. For each tensile reinforcement value, three types of compressive reinforcement were taken into account which are classified into zero compressive bars, less than tensile reinforcement value and similar to tensile reinforcement value. The concrete was used in this study is C45 and as a constant parameter.Specimens were tested with four-point bending method using the actuator equipped at the strong floor laboratory to attain maximum flexural strength and... 

    An analytical study on the elastic-plastic pure bending of a linear kinematic hardening curved beam

    , Article International Journal of Mechanical Sciences ; Volume 144 , 2018 , Pages 274-282 ; 00207403 (ISSN) Fazlali, M. R ; Arghavani, J ; Eskandari, M ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In this study, an analytical solution is presented for elastic-plastic pure bending of a linear kinematic hardening curved beam with rectangular cross section both in monotonic loading and unloading. Compared to exact plane plasticity solution (already reported in the literature in loading) which needs solution of a system of equations, the proposed method is based on the hyperbolic strain distribution on the cross section which yields a simple approximate solution. To this end, we employ Winkler's theory, and assume plane cross sections remain plane after loading proved by the exact elasticity and plasticity solutions for pure bending of curved beams with rectangular cross section. At the...