Search for: motor-activity
0.011 seconds

    Diffuser miniature pump with an extra ferrofluidic valve

    , Article Microfluidics and Nanofluidics ; Volume 19, Issue 5 , November , 2015 , Pages 1235-1244 ; 16134982 (ISSN) Ashouri, M ; Shafii, M. B ; Moosavi, A ; Sharif University of Technology
    Springer Verlag  2015
    This paper presents the prototype design and fabrication of a magnetically actuated miniature pump that utilizes self-sealing capability of ferrofluid-covered permanent magnets in both pumping and valving mechanisms. The valving action is performed by employing one active valve along with two nozzle/diffuser elements. Two cylindrical permanent magnets are placed inside the flat-wall channels: One magnet acts as the active valve and the other one serves as a reciprocating piston actuating the working fluid. In order to seal the gaps between the channel walls and the permanent magnet of the valve/piston, ferrofluid is used to cover the surfaces of both magnets. The valve and the piston are... 

    Accuracy of Kinect's skeleton tracking for upper body rehabilitation applications

    , Article Disability and Rehabilitation: Assistive Technology ; Vol. 9, issue. 4 , 2014 , pp. 344-352 ; ISSN: 17483107 Mobini, A ; Behzadipour, S ; Saadat Foumani, M ; Sharif University of Technology
    Games and their use in rehabilitation have formed a new and rapidly growing area of research. A critical hardware component of rehabilitation programs is the input device that measures the patients' movements. After Microsoft released Kinect, extensive research has been initiated on its applications as an input device for rehabilitation. However, since most of the works in this area rely on a qualitative determination of the joints' movements rather than an accurate quantitative one, detailed analysis of patients' movements is hindered. The aim of this article is to determine the accuracy of the Kinect's joint tracking. To fulfill this task, a model of upper body was fabricated. The... 

    Direct torque control of induction motor by active learning method

    , Article PEDSTC 2010 - 1st Power Electronics and Drive Systems and Technologies Conference, 17 February 2010 through 18 February 2010, Tehran ; 2010 , Pages 267-272 ; 9781424459728 (ISBN) Ghorbani, M. J ; Akhbari, M ; Mokhtari, H ; Sharif University of Technology
    This paper presents a high performance direct torque control (DTC) theme for the induction motor (IM). To solve those problems associated with conventional DTC, such as flux and torque ripple, variable switching frequency, inaccuracy in motor model and other parts of system. The Active Learning Method (ALM) is implemented on the DTC. In the Active Learning Method for information modeling, a method known as Ink Drop Spread (IDS) is used. The simulation results of DTC system based on ALM and the comparison of motor performance under the proposed control system with respect to those obtained under conventional DTC confirms its effectiveness and accuracy  

    A novel approach to recognize hand movements via sEMG patterns

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 4907-4910 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Khezri, M ; Jahed, M ; Sharif University of Technology
    Electromyogram signal (EMG) is an electrical manifestation of contractions of muscles. Surface EMG (sEMG) signal collected form surface of the skin has been used in diverse applications. One of its usages is exploiting it in a pattern recognition system which evaluates and synthesizes hand prosthesis movements. The ability of current prosthesis has been limited in simple opening and closing that decreases the efficacy of these devices in contrary to natural hand. In order to extend the ability and accuracy of prosthesis arm movements and performance, a novel approach for sEMG pattern recognizing system is proposed. In order to have a relevant comparison, present and recent research for... 

    Improvement of upper limb motor control and function after competitive and noncompetitive volleyball exercises in chronic stroke survivors: a randomized clinical trial

    , Article Archives of Physical Medicine and Rehabilitation ; Volume 100, Issue 3 , 2019 , Pages 401-411 ; 00039993 (ISSN) Mandehgary Najafabadi, M ; Azad, A ; Mehdizadeh, H ; Behzadipour, S ; Fakhar, M ; Taghavi Azar Sharabiani, P ; Parnianpour, M ; Taghizadeh, G ; Khalaf, K ; Sharif University of Technology
    W.B. Saunders  2019
    Objectives: To investigate the effects of competitive and noncompetitive volleyball exercises on the functional performance and motor control of the upper limbs in chronic stroke survivors. Design: Randomized clinical trial. Setting: Outpatient rehabilitation center. Participants: Chronic stroke survivors (N=48). Interventions: Participants were randomly assigned to competitive (n=16) or noncompetitive (n=16) volleyball exercise groups (60min/d volleyball exercise+30min/d traditional rehabilitation, 3d/wk for 7wk) and control group (n=16). Main Outcome Measures: Reach and grasp motor control measures were evaluated through kinematic analysis. Functional outcomes were assessed via Motor... 

    Effects of short term and long term Extremely Low Frequency Magnetic Field on depressive disorder in mice: Involvement of nitric oxide pathway

    , Article Life Sciences ; Volume 146 , 2016 , Pages 52-57 ; 00243205 (ISSN) Madjid Ansari, A ; Farzam Pour, S ; Sadr, A ; Shekarchi, B ; Majid Zadeh, A. K ; Sharif University of Technology
    Elsevier Inc 
    Aims Previous reports on the possible effects of Extremely Low Frequency Magnetic Fields (ELF MF) on mood have been paradoxical in different settings while no study has yet been conducted on animal behavior. In addition, it was shown that ELF MF exposure makes an increase in brain nitric oxide level. Therefore, in the current study, we aimed to assess the possible effect(s) of ELF MF exposure on mice Forced Swimming Test (FST) and evaluate the probable role of the increased level of nitric oxide in the observed behavior. Main methods Male adult mice NMRI were recruited to investigate the short term and long term ELF MF exposure (0.5 mT and 50 Hz, single 2 h and 2 weeks 2 h a day). Locomotor... 

    A rigid body spring model to investigate the lateral shift-Restraining force behavior of the patellar

    , Article 29th Annual International Conference of IEEE-EMBS, Engineering in Medicine and Biology Society, EMBC'07, Lyon, 23 August 2007 through 26 August 2007 ; 2007 , Pages 4679-4682 ; 05891019 (ISSN) ; 1424407885 (ISBN); 9781424407880 (ISBN) Jafari, A ; Farahmand, F ; Meghdari, A ; Sharif University of Technology
    Patellar lateral stability was studied using a 2D transverse plane model with deformable articular surfaces. Quadriceps muscles and patellar tendon were considered as strings with predefined forces and lateral and medial retinaculum as tensile springs. Deformation behavior of articular cartilage was modeled by a set of compression springs perpendicular to articular surfaces, based on rigid body spring model method (RBSM). Patellar lateral stability was investigated using restraining force method (the external force required to cause up to 10 mm lateral displacement on patella). The results were in good agreement with experimental reports for normal joint, vastus lateralis and vastus medialis... 

    The 2017 and 2018 Iranian Brain-Computer interface competitions

    , Article Journal of Medical Signals and Sensors ; Volume 10, Issue 3 , 2020 , Pages 208-216 Aghdam, N ; Moradi, M ; Shamsollahi, M ; Nasrabadi, A ; Setarehdan, S ; Shalchyan, V ; Faradji, F ; Makkiabadi, B ; Sharif University of Technology
    Isfahan University of Medical Sciences(IUMS)  2020
    This article summarizes the first and second Iranian brain-computer interface competitions held in 2017 and 2018 by the National Brain Mapping Lab. Two 64-channel electroencephalography (EEG) datasets were contributed, including motor imagery as well as motor execution by three limbs. The competitors were asked to classify the type of motor imagination or execution based on EEG signals in the first competition and the type of executed motion as well as the movement onset in the second competition. Here, we provide an overview of the datasets, the tasks, the evaluation criteria, and the methods proposed by the top-ranked teams. We also report the results achieved with the submitted algorithms...