Loading...
Search for: multi-body-dynamic
0.01 seconds

    A fresh insight into Kane's equations of motion

    , Article Robotica ; 2015 ; 02635747 (ISSN) Pishkenari, H. N ; Yousefsani, S. A ; Gaskarimahalle, A. L ; Oskouei, S. B. G ; Sharif University of Technology
    Cambridge University Press  2015
    Abstract
    With rapid development of methods for dynamic systems modeling, those with less computation effort are becoming increasingly attractive for different applications. This paper introduces a new form of Kane's equations expressed in the matrix notation. The proposed form can efficiently lead to equations of motion of multi-body dynamic systems particularly those exposed to large number of nonholonomic constraints. This approach can be used in a recursive manner resulting in governing equations with considerably less computational operations. In addition to classic equations of motion, an efficient matrix form of impulse Kane formulations is derived for systems exposed to impulsive forces.... 

    Investigation of dynamics and vibration of a three unit pig in oil and gas pipelines

    , Article 2008 ASME International Mechanical Engineering Congress and Exposition, IMECE 2008, Boston, MA, 31 October 2008 through 6 November 2008 ; Volume 11 , 2009 , Pages 265-275 ; 9780791848722 (ISBN) Durali, M ; Fazeli, A ; Azimi, M ; Sharif University of Technology
    2009
    Abstract
    In this paper, the transient motion of a three unit intelligent Pipe Inspection Gauge (PIG) while moving across anomalies and bends inside gas/oil pipeline has been investigated. The pipeline fluid has been considered as isothermal and compressible. In addition, the pipeline itself has also been considered to be flexible. The fluid continuity and momentum equations along with the 3D multi body dynamic equations of motion of the pig comprise a system of coupled dynamic differential equations which have been solved numerically. Pig's position and velocity profiles as well as upstream and downstream fluid's pressure waves are presented as simulation results which provide a better understanding... 

    Quasi-velocities definition in Lagrangian multibody dynamics

    , Article Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science ; Volume 235, Issue 20 , 2021 , Pages 4679-4691 ; 09544062 (ISSN) Mirtaheri, S. M ; Zohoor, H ; Sharif University of Technology
    SAGE Publications Ltd  2021
    Abstract
    Based on Lagrangian mechanics, use of velocity constraints as a special set of quasi-velocities helps derive explicit equations of motion. The equations are applicable to holonomic and nonholonomic constrained multibody systems. It is proved that in proposed quasi-spaces, the Lagrange multipliers are eliminated from equations of motion; however, it is possible to compute these multipliers once the equations of motion have been solved. The novelty of this research is employing block matrix inversion to find the analytical relations between the parameters of quasi-velocities and equations of motion. In other words, this research identifies arbitrary submatrices and their effects on equations... 

    Simulation of vehicle body spot weld failures due to fatigue by considering road roughness and vehicle velocity

    , Article Simulation Modelling Practice and Theory ; Volume 105 , 2020 Farrahi, G. H ; Ahmadi, A ; Reza Kasyzadeh, K ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Durability of the vehicle components needs special attention in the design step due to this fact that the loads on a vehicle are dynamic by their nature. Also, fatigue resistance of the vehicle body is quite important as it is the main load-bearing component among others. The main purpose of the present research is to simulate the spot weld failures of the vehicle body structure due to fatigue damage induced on the body during standardized maneuvers. This was accomplished by using a combination of multi-body dynamics and finite element analyses. To enhance the precision of the analysis, a thickness-dependent nugget diameter was utilized to model the spot welds. To validate the finite element... 

    Equilibrium analysis of multibody dynamic systems using genetic algorithm in comparison with constrained and unconstrained optimization techniques

    , Article Structural and Multidisciplinary Optimization ; Volume 36, Issue 4 , 2008 , Pages 381-391 ; 1615147X (ISSN) Haddadpour, H ; Dehghani Firouz Abadi, R ; Fotouhi, M. M ; Sharif University of Technology
    2008
    Abstract
    The present paper describes a set of procedures for the solution of nonlinear equilibrium problems in complex multibody systems. To find the equilibrium position of the system, six different optimization algorithms are used to minimize the total potential energy (TPE) of the system and compared with respect to accuracy and efficiency. A computer program is developed to evaluate the equality constraints and objective function of a general multibody dynamic system to find the equilibrium condition. It is seen that the indirect methods have better results and converge faster. Also it is shown that the genetic algorithm (GA) results in a global optimum while the other methods converge to a local...