Search for: multi-objective-optimizations--moo
0.006 seconds

    Optimum design process of vibration absorber via imperialist competitive algorithm

    , Article International Journal of Structural Stability and Dynamics ; Volume 12, Issue 3 , 2012 ; 02194554 (ISSN) Hoseini, R ; Salehipoor, H ; Sharif University of Technology
    This paper deals with the optimum design of vibration absorbers utilized to reduce undesirable random vibrational effects that are originated in linear structures. Analytical expressions, for the case of nonstationary white-noise accelerations, are derived. The criterion is different from most conventional optimum design criteria, since it is based on minimizing the displacement or the acceleration variance of the main structure responses, without considering performances required against failure. In this study, in order to control the structural vibrations induced on a mechanical structure excited by nonstationary based acceleration random process, the MOO (multi-objective optimum) design... 

    Multi-objective optimization of functionally graded hollow cylinders

    , Article ASME 2011 International Mechanical Engineering Congress and Exposition, IMECE 2011 ; Volume 8 , 2011 , Pages 583-590 ; 9780791854945 (ISBN) Nabian, M ; Ahmadian, M. T ; ASME ; Sharif University of Technology
    In this study, two physical properties of simply supported hollow cylinders made of functionally graded materials are investigated. These two properties are mass and first natural frequency which is desirable to be minimized and maximized respectively in mechanical applications. The functionally graded material properties are assumed to vary continuously through the thickness of the cylinder. In this multi-objective optimization problem the first natural frequency of the FGM cylinders as well as its mass are formulated in terms of the volume fraction of the constituents, then by using Genetic algorithm optimization method the continuous volume fraction function of the constituents has been... 

    A dynamic fuzzy interactive approach for DG expansion planning

    , Article International Journal of Electrical Power and Energy Systems ; Volume 43, Issue 1 , 2012 , Pages 1094-1105 ; 01420615 (ISSN) Esmi Jahromi, M ; Ehsan, M ; Fattahi Meyabadi, A ; Sharif University of Technology
    This paper presents a dynamic multi objective model for distribution network expansion, considering the distributed generators (DGs) and network reinforcements. The proposed model simultaneously optimizes three objective functions namely, total cost, emission cost and technical satisfaction (voltage profile) by finding the optimal schemes of timing, sizing, placement and DG technologies in a long term planning period (dynamic planning). The importance of each objective function can be changed in the interactive steps. The calculation algorithm is based on Chaotic Local Search with Modified Honey Bee Mating Optimization (CLSMHBMO). The effectiveness of the proposed model and the calculation... 

    Thermodynamic assessment and multi-objective optimization of performance of irreversible dual-miller cycle

    , Article Energies ; Volume 12, Issue 20 , 2019 ; 19961073 (ISSN) Abedinnezhad, S ; Ahmadi, M. H ; Pourkiaei, S. M ; Pourfayaz, F ; Mosavi, A ; Feidt, M ; Shamshirband, S ; Sharif University of Technology
    MDPI AG  2019
    In this study, a new series of assessments and evaluations of the Dual-Miller cycle is performed. Furthermore, the specified output power and the thermal performance associated with the engine are determined. Besides, multi-objective optimization of thermal efficiency, ecological coefficient of performance (ECOP) and ecological function (Eun) by means of NSGA-II technique and thermodynamic analysis are presented. The Pareto optimal frontier obtaining the best optimum solution is identified by fuzzy Bellman-Zadeh, Linear Programming Technique for Multidimensional Analysis of Preference (LINMAP), and Technique for Order of Preference by Similarity to Ideal Solution (TOPSIS) decision-making... 

    An interactive fuzzy multi-objective approach for short term DG planning

    , Article International Journal of Innovative Computing, Information and Control ; Volume 8, Issue 6 , 2012 , Pages 4157-4175 ; 13494198 (ISSN) Jahromi, M. E ; Ehsan, M ; Meyabadi, A. F ; Niknam, T ; Sharif University of Technology
    This paper presents a short term multi-objective planning model for Distributed Generators (DGs) deployment in an electrical network. "Total Cost" and "Emission Cost" are two objective functions which have been going to be minimized in this model by finding the optimal schemes of sizing, placement and DG technologies over a short planning period (static planning). The proposed model can be used for a long term planning period (dynamic planning) in order to consider the timing concept. An interactive fuzzy satisfying method based on Chaotic Local Search and Modified Honey Bee Mating Optimization (CLS-MHBMO) is used to choose the final solution. The effectiveness of the proposed model and... 

    Multi-objective node placement considering non-uniform event pattern

    , Article Wireless Personal Communications ; Volume 97, Issue 4 , 2017 , Pages 6189-6220 ; 09296212 (ISSN) Mohtashami, H ; Movaghar, A ; Teshnehlab, M ; Sharif University of Technology
    Ease of use, high flexibility and variety of applications have made wireless sensor networks very popular. Node placement in a sensor network is very critical since it affects important network attributes such as coverage, lifetime, and reliability. Therefore, controlled node placement is necessary for achieving specific network features with minimum number of nodes. Since node placement is an NP-hard problem, many placement algorithms have been proposed based on heuristic and meta-heuristic methods. Most of those algorithms assume a uniform event pattern (UEP) throughout the area under investigation. However, in practice some networks deal with non-uniform event pattern (NEP). Optimization...