Loading...
Search for: multi-walled-nanotube
0.005 seconds

    Elastic behavior of an edge dislocation inside the wall of a nanotube

    , Article Scripta Materialia ; Volume 64, Issue 8 , 2011 , Pages 709-712 ; 13596462 (ISSN) Moeini Ardakani, S. S ; Gutkin, M. Y ; Shodja, H. M ; Sharif University of Technology
    Abstract
    The problem of edge dislocation inside the wall of a multi-walled nanotube accounting for the surface effects is addressed. Within the framework of surface elasticity the stress field is obtained, using complex potentials. Furthermore, the stress field and image forces acting on the dislocation, with and without an account of the surface stress, are compared together and discussed  

    Variational principles for stability analysis of multi-walled carbon nanotubes based on a nonlocal elastic shell model

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, Istanbul, 12 July 2010 through 14 July 2010 ; Volume 5 , 2010 , Pages 591-598 ; 9780791849194 (ISBN) Asghari, M ; Rafati, J ; Sharif University of Technology
    2010
    Abstract
    The nonlocal continuum theories are capable to reflect the small length characteristic of nanostructures. In this work, variational principles are presented for the stability analysis of multi-walled carbon nanotubes under various mechanical loadings based on the nonlocal elastic Donnell's shell by the semi-inverse method. In this manner, a set of proper essential and natural boundary conditions for each layer of the multi-walled nanotube is derived  

    Modified Gadonanotubes as a promising novel MRI contrasting agent

    , Article DARU, Journal of Pharmaceutical Sciences ; Volume 21, Issue 1 , 2013 ; 15608115 (ISSN) Jahanbakhsh, R ; Atyabi, F ; Shanehsazzadeh, S ; Sobhani, Z ; Adeli, M ; Dinarvand, R ; Sharif University of Technology
    2013
    Abstract
    Background and purpose of the study. Carbon nanotubes (CNTs) are emerging drug and imaging carrier systems which show significant versatility. One of the extraordinary characteristics of CNTs as Magnetic Resonance Imaging (MRI) contrasting agent is the extremely large proton relaxivities when loaded with gadolinium ion (Gdn 3+) clusters. Methods. In this study equated Gdn 3+ clusters were loaded in the sidewall defects of oxidized multiwalled (MW) CNTs. The amount of loaded gadolinium ion into the MWCNTs was quantified by inductively coupled plasma (ICP) method. To improve water solubility and biocompatibility of the system, the complexes were functionalized using diamine-terminated... 

    The effects of geometrical parameters on force distributions and mechanics of carbon nanotubes: A critical study

    , Article Communications in Nonlinear Science and Numerical Simulation ; Volume 14, Issue 12 , 2009 , Pages 4246-4263 ; 10075704 (ISSN) Ansari, R ; Motevalli, B ; Sharif University of Technology
    Abstract
    In this paper, using the continuum approximation together with Lennard-Jones potential, a new semi-analytical expression is given to evaluate the van der Waals interaction between two single-walled carbon nanotubes. Based on this expression, two new formulations are also proposed to model multi-walled carbon nanotubes. In the first one, the interactions between each pair of shells from the inner and outer tubes are summed up over all of the pairs, whereas in the second formulation, a set of correction factors are applied to convert the results of double-walled carbon nanotubes to the correlated multi-walled ones. With respect to the present formulations, extensive studies on the variations... 

    The TCVD growth of CNTs over copper-silver-palladium nanoparticles prepared by DC magnetron sputtering

    , Article Acta Physica Polonica A ; Volume 137, Issue 6 , 2020 , Pages 1075-1079 Rezaee, S ; Mardani, M ; Shakoury, R ; Sharif University of Technology
    Polish Academy of Sciences  2020
    Abstract
    In this study, we investigate the use of catalytic copper-silver-palladium substrates for the growth of multiwalled carbon nanotubes via the thermal chemical vapor deposition. These layers are comprised of nanocrystals of Cu2O, CuO, Ag, Pd, Cu, and PdO and were grown using a DC magnetron sputtering method. Scanning electron microscopy characterizations confirmed the significant growth of carbon nanotubes on the catalytic layer. A comparison of the growth of nanotubes indicated that the thickness of the catalytic layers has a significant impact on the quality and the diameter of the carbon nanotubes. Two major peaks were seen in the Raman spectrum. The formation of graphite multiwalled... 

    Characterization of carbon nanotube dispersion and filler network formation in melted polyol for nanocomposite materials

    , Article Powder Technology ; Volume 276 , 2015 , Pages 222-231 ; 00325910 (ISSN) Pircheraghi, G ; Foudazi, R ; Manas Zloczower, I ; Sharif University of Technology
    Elsevier  2015
    Abstract
    Different grades of carbon nanotubes (CNTs) were dispersed in poly(tetramethylene ether glycol) (PTMEG) without any solvent in the presence of a block copolymer dispersing agent by ultrasonication at a temperature well above the melting point of the PTMEG. The state of CNT dispersion at different length scales was evaluated by using optical microscopy, UV-Vis spectroscopy, rheological measurements, differential scanning calorimetry, thermogravimetric analysis and sedimentation tests. Optical microscopy can be used to characterize the state of dispersion and CNT network formation on a micrometer scale, whereas UV-Vis provides useful information about the dispersion of individual CNTs at... 

    DNA impedance biosensor for detection of cancer, TP53 gene mutation, based on gold nanoparticles/aligned carbon nanotubes modified electrode

    , Article Analytica Chimica Acta ; Vol. 836, issue , July , 2014 , p. 34-44 ; ISSN: 00032670 Fayazfar, H ; Afshar, A ; Dolati, M ; Dolati, A ; Sharif University of Technology
    Abstract
    For the first time, a new platform based on electrochemical growth of Au nanoparticles on aligned multi-walled carbon nanotubes (A-MWCNT) was developed for sensitive lable-free DNA detection of the TP53 gene mutation, one of the most popular genes in cancer research. Electrochemical impedance spectroscopy (EIS) was used to monitor the sequence-specific DNA hybridization events related to TP53 gene. Compared to the bare Ta or MWCNT/Ta electrodes, the synergistic interactions of vertically aligned MWCNT array and gold nanoparticles at modified electrode could improve the density of the probe DNA attachment and resulting the sensitivity of the DNA sensor greatly. Using EIS, over the extended... 

    Electrochemical determination of clozapine on MWCNTs/new coccine doped ppy modified GCE: An experimental design approach

    , Article Bioelectrochemistry ; Volume 90 , 2013 , Pages 36-43 ; 15675394 (ISSN) Shahrokhian, S ; Kamalzadeh, Z ; Hamzehloei, A ; Sharif University of Technology
    2013
    Abstract
    The electrooxidation of clozapine (CLZ) was studied on the surface of a glassy carbon electrode (GCE) modified with a thin film of multiwalled carbon nanotubes (MWCNTs)/new coccine (NC) doped polypyrrole (PPY) by using linear sweep voltammetry (LSV). The pH of the supporting electrolyte (D), drop size of the cast MWCNTs suspension (E) and accumulation time of CLZ on the surface of modified electrode (F) was considered as effective experimental factors and the oxidation peak current of CLZ was selected as the response. By using factorial-based response-surface methodology, the optimum values of factors were obtained as 5.44, 10 μL and 300 s for D, E and F respectively. Under the optimized... 

    Fabrication of a modified electrode based on Fe3 O4 NPs/MWCNT nanocomposite: Application to simultaneous determination of guanine and adenine in DNA

    , Article Bioelectrochemistry ; Volume 86 , 2012 , Pages 78-86 ; 15675394 (ISSN) Shahrokhian, S ; Rastgar, S ; Amini, M. K ; Adeli, M ; Sharif University of Technology
    Abstract
    Multi-walled carbon nanotubes decorated with Fe 3O 4 nanoparticles (Fe 3O 4NPs/MWCNT) were prepared and used to construct a novel biosensor for the simultaneous detection of adenine and guanine. The direct electro-oxidation of adenine and guanine on the modified electrode were investigated by linear sweep voltammetry. The results indicate a remarkable increase in the oxidation peak currents together with negative shift in the oxidation peak potentials for both adenine and guanine, in comparison to the bare glassy carbon electrode (GCE). The surface morphology and nature of the composite film deposited on GCE were characterized by transmission electron microscopy, atomic force microscopy,... 

    Towards greater mechanical, thermal and chemical stability in solid-phase microextraction

    , Article TrAC - Trends in Analytical Chemistry ; Volume 34 , 2012 , Pages 126-138 ; 01659936 (ISSN) Bagheri, H ; Piri-Moghadam, H ; Naderi, M ; Sharif University of Technology
    Abstract
    Solid-phase microextraction (SPME) is a fast, solvent-free technique, which, since its introduction in the 1990s, has been increasingly applied to sample preparation in analytical chemistry. Conventional SPME fibers are fabricated by making a physical bond between the usual silica substrate and the polymeric coatings. However, some applications are limited, as the lifetime and the stability of conventional SPME fibers cannot meet the demands of analyzing relatively non-volatile compounds with more polar moieties. There have been attempts to analyze less volatile compounds by increasing the thermal, physical and chemical stability of the fibers. In this review, we present some new... 

    Highly sensitive voltammetric determination of lamotrigine at highly oriented pyrolytic graphite electrode

    , Article Bioelectrochemistry ; Volume 84 , 2012 , Pages 38-43 ; 15675394 (ISSN) Saberi, R. S ; Shahrokhian, S ; Sharif University of Technology
    2012
    Abstract
    The electrochemical behavior of lamotrigine (LMT) at the pyrolytic graphite electrode (PGE) is investigated in detail by the means of cyclic voltammetry. During the electrochemical reduction of LMT, an irreversible cathodic peak appeared. Cyclic voltammetric studies indicated that the reduction process has an irreversible and adsorption-like behavior. The observed reduction peak is attributed to a two-electron process referring to the reduction of azo group. The electrode showed an excellent electrochemical activity toward the electro-reduction of LMT, leading to a significant improvement in sensitivity as compared to the glassy carbon electrode. The results of electrochemical impedance... 

    Membrane protected conductive polymer as micro-SPE device for the determination of triazine herbicides in aquatic media

    , Article Journal of Separation Science ; Volume 33, Issue 8 , 2010 , Pages 1132-1138 ; 16159306 (ISSN) Bagheri, H ; Khalilian, F ; Naderi, M ; Babanezhad, E ; Sharif University of Technology
    Abstract
    A micro-SPE technique was developed by fabricating a rather small package including a polypropylene membrane shield containing the appropriate sorbent. The package was used for the extraction of some triazine herbicides from aqueous samples. Solvent desorption was subsequently performed in a microvial and an aliquot of extractant was injected into GC-MS. Various sorbents including aniline-ortho-phenylene diamine copolymer, newly synthesized, polypyrrole, multiwall carbon nanotube, C18 and charcoal were examined as extracting media. Among them, conductive polymers exhibited better performance. Influential parameters including extraction and desorption time, desorption solvent and the ionic... 

    Magnetic carbon nanotubes: preparation, physical properties, and applications in biomedicine

    , Article Artificial Cells, Nanomedicine and Biotechnology ; Volume 46, Issue 7 , 2018 , Pages 1314-1330 ; 21691401 (ISSN) Samadishadlou, M ; Farshbaf, M ; Annabi, N ; Kavetskyy, T ; Khalilov, R ; Saghfi, S ; Akbarzadeh, A ; Mousavi, S ; Sharif University of Technology
    Abstract
    Magnetic carbon nanotubes (MCNTs) have been widely studied for their potential applications in medicine, diagnosis, cell biology, analytical chemistry, and environmental technology. Introduction of MCNTs paved the way for the emergence of new approaches in nanobiotechnology and biomedicine as a result of their multifarious properties embedded within either the carbon nanotubes (CNTs) or magnetic parts. Numerous preparation techniques exists for functionalizing CNTs with magnetic nanoparticles, and these versatile strategies lay the ground for the generation of novel and versatile systems which are applicable to many industries and biological areas. Here, we review and discuss the recent... 

    Nanocapsules based on carbon nanotubes-graft-polyglycerol hybrid materials

    , Article Nanotechnology ; Volume 20, Issue 48 , 2009 ; 09574484 (ISSN) Adeli, M ; Mirab, N ; Zabihi, F ; Sharif University of Technology
    2009
    Abstract
    In this work the effect of a conjugated macromolecule on the conformation of CNT was studied. Typically polyglycerol (PG) was covalently grafted onto the surface of multi-wall carbon nanotubes (MWCNTs) and MWCNT-graft-PG (MWCNT- g-PG) hybrid materials were obtained. Dynamic light scattering (DLS) experiments showed an average diameter around 100nm for MWCNT- g-PG hybrid materials in water. The difference between this size and the expected size for MWCNT- g-PG hybrid materials (the length of pristine MWCNTs was several micrometers) was assigned to the effect of the grafted PG on the conformation of MWCNT in the solution state. Transmission electron microscopy (TEM) evaluations showed a change... 

    Pharmaceuticals removal by immobilized laccase on polyvinylidene fluoride nanocomposite with multi-walled carbon nanotubes

    , Article Chemosphere ; Volume 263 , 2021 ; 00456535 (ISSN) Masjoudi, M ; Golgoli, M ; Ghobadi Nejad, Z ; Sadeghzadeh, S ; Borghei, S. M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The presence of pharmaceutical micropollutants in water and wastewater is considered a serious environmental issue. To eliminate these pollutants, biodegradation of pharmaceuticals using enzymes such as laccase, is proposed as a green method. In this study, immobilized laccase was used for the removal of two model pharmaceutical compounds, carbamazepine and diclofenac. Polyvinylidene fluoride (PVDF) membrane modified with multi-walled carbon nanotubes (MWCNTs) were synthesized as a tailor-made support for enzyme immobilization. Covalently immobilized laccase from Trametes hirsuta exhibited remarkable activity and activity recovery of 4.47 U/cm2 and 38.31%, respectively. The results also... 

    Multi-walled carbon nanotubes with immobilised cobalt nanoparticle for modification of glassy carbon electrode: Application to sensitive voltammetric determination of thioridazine

    , Article Biosensors and Bioelectronics ; Volume 24, Issue 11 , 2009 , Pages 3235-3241 ; 09565663 (ISSN) Shahrokhian, S ; Ghalkhani, M ; Adeli, M ; Amini, M. K ; Sharif University of Technology
    2009
    Abstract
    Multi-walled carbon nanotubes (MWCNTs) were immobilised with cobalt nanoparticles and analyzed by transmission electron microscopy. This modification procedure substantially improved colloidal dispersion of the immobilised MWCNTs in water and organic solvents, yielding uniform and stable thin films for modification of the glassy carbon electrode surface. The modified electrode showed an efficient catalytic role for the electrochemical oxidation of thioridazine (TR), leading to remarkable decrease in its oxidation overpotential of approximately 100 mV and enhancement of the kinetics of the electrode reaction, which can be confirmed by increasing in the peak current and sharpness of the peak.... 

    Graphene-based nanomaterials in fighting the most challenging viruses and immunogenic disorders

    , Article ACS Biomaterials Science and Engineering ; Volume 8, Issue 1 , 2022 , Pages 54-81 ; 23739878 (ISSN) Ebrahimi, M ; Asadi, M ; Akhavan, O ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    Viral diseases have long been among the biggest challenges for healthcare systems around the world. The recent Coronavirus Disease 2019 (COVID-19) pandemic is an example of how complicated the situation can get if we are not prepared to combat a viral outbreak in time, which brings up the need for quick and affordable biosensing platforms and vast knowledge of potential antiviral effects and drug/gene delivery opportunities. The same challenges have also existed for nonviral immunogenic disorders. Nanomedicine is considered a novel candidate for effectively overcoming these worldwide challenges. Among the versatile nanomaterials commonly used in biomedical applications, graphene has recently...