Loading...
Search for: multiaxial
0.007 seconds

    Multiaxial stress-strain modeling and effect of additional hardening due to nonproportional loading

    , Article Journal of Mechanical Science and Technology ; Volume 21, Issue 8 , 2007 , Pages 1153-1161 ; 1738494X (ISSN) Rashed, G ; Ghajar, R ; Farrahi, G ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2007
    Abstract
    Most engineering components are subjected to multiaxial rather than uniaxial cyclic loading, which causes multiaxial fatigue. The pre-requisite to predict the fatigue life of such components is to determine the multiaxial stressstrain relationship. In this paper the multiaxial cyclic stress-strain model under proportional loading is derived using the modified power law stress-strain relationship. The equivalent strain amplitude consisted of the normal strain excursion and maximum shear strain amplitude is used in the proportional model to include the additional hardening effect due to nonproportional loading. Therefore a new multiaxial cyclic stress-strain relationship is devised for out of... 

    Obtaining multiaxial residual stress distributions from limited measurements

    , Article Materials Science and Engineering A ; Volume 303, Issue 1-2 , 2001 , Pages 281-291 ; 09215093 (ISSN) Smith, D. J ; Farrahi, G. H ; Zhu, W. X ; McMahon, C. A ; Sharif University of Technology
    2001
    Abstract
    Knowledge of the complete multiaxial residual stress distribution in engineering components is essential for assessing their integrity. Often, however, only limited measurements are made. Here, an analysis is presented for determining the multiaxial distribution from a limited set of measurements. These measurements are used with an assumed plastic strain distribution. Residual stress measurements were made on hot forged and shot blasted steel bars using X-ray and neutron diffraction techniques. The residual stresses were measured on the surface and at selected interior points of the specimens. The predicted multiaxial distributions were compared with experimental measurements obtained using... 

    Experimental accuracy assessment of various high-cycle fatigue criteria for a critical component with a complicated geometry and multi-input random non-proportional 3D stress components

    , Article Engineering Failure Analysis ; Volume 90 , 2018 , Pages 534-553 ; 13506307 (ISSN) Kashyzadeh, K. R ; Farrahi, G. H ; Shariyat, M ; Ahmadian, M. T ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present paper, a steering knuckle of a passenger car that serves as a highly critical component from the safety point of view, is considered to evaluate accuracy some of categories of the multiaxial fatigue criteria, through comparing their predictions with the experimental results. This component is subjected to the highest road- and steering-induced random and non-proportional loads that are exerted on several points of the component. The mechanical properties and fatigue strengths are determined experimentally and the fatigue life assessment tests are performed by the authors. Quantometric analyses and scanning electron microscope (SEM) have been employed to detect the failure... 

    Developing a Method for Fatigue Life Assessment of Vehicle Biw by Considering Spot Welding Connections

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Alireza (Author) ; Farrahi, Gholamhossein (Supervisor) ; Chizari, Mahmoud (Supervisor) ; Reza Kashyzadeh, Kazem (Co-Supervisor)
    Abstract
    One of the most important considerations in the vehicle design procedure is the durability of the components. Among different parts of a vehicle, the body is the main load-bearing component and as a result, its durability is critical. Due to the expensive and time-consuming nature of fatigue tests, finite element based durability analysis is of great interest among automotive industry. The aim of this research is to provide an algorithm for a more accurate and efficient durability analysis of the vehicle body by considering inertia effects. By using the multi-body dynamics model of the full vehicle and the finite element model of the vehicle body, the vehicle body structure is analyzed from... 

    Control of Base Metal Capacity of Welded Connections under Multiaxial Loading

    , M.Sc. Thesis Sharif University of Technology Malek Ghaini, Niloofar (Author) ; Maleki, Shervin (Supervisor)
    Abstract
    Block shear failure in the parent material is considered as a common potential failure mode in welded connections used in steel structures. However, there is only little research reported on the block shear failure of welded connections under multiaxial loading. Multiaxial loading is defined as loading not parallel or perpendicular to weld lines and in the case of in planar eccentricity results in torsional loads. In this research a nonlinear finite element model is developed to study the effect of connection geometry, weld group configuration, and eccentricity of lap splice connection on block shear capacity. The case studied concerns a 3 milimeter thick structural steel plate (CSA G40.21... 

    A 3-D phenomenological constitutive model for shape memory alloys under multiaxial loadings

    , Article International Journal of Plasticity ; Volume 26, Issue 7 , July , 2010 , Pages 976-991 ; 07496419 (ISSN) Arghavani, J ; Auricchio, F ; Naghdabadi, R ; Reali, A ; Sohrabpour, S ; Sharif University of Technology
    2010
    Abstract
    This paper presents a new phenomenological constitutive model for shape memory alloys, developed within the framework of irreversible thermodynamics and based on a scalar and a tensorial internal variable. In particular, the model uses a measure of the amount of stress-induced martensite as scalar internal variable and the preferred direction of variants as independent tensorial internal variable. Using this approach, it is possible to account for variant reorientation and for the effects of multiaxial non-proportional loadings in a more accurate form than previously done. In particular, we propose a model that has the property of completely decoupling the pure reorientation mechanism from... 

    A lamellar inhomogeneity near a multiphase reinforcement

    , Article Acta Mechanica ; Volume 206, Issue 1-2 , 2009 , Pages 39-52 ; 00015970 (ISSN) Ojaghnezhad, F ; Shodja, H. M ; Sharif University of Technology
    2009
    Abstract
    In composites, the stress intensity factors (SIFs) of a lamellar inhomogeneity near a multiphase reinforcement are of interest. Based on extension of Eshelby's equivalent inclusion method, a unified approach is presented to study the effect of a multiphase inhomogeneity on the SIF at the tip points of two- and threedimensional lamellar inhomogeneities under nonuniform far-field loadings. Alteration of the SIF due to the presence of a coating layer around the inhomogeneity is addressed. Furthermore, the effect of geometry and stiffness of each phase of a multiphase reinforcement on the mixed mode SIFs of a lamellar inhomogeneity is investigated. In contrast to cracks whose SIFs are the same... 

    Fatigue life estimation of bolt clamped and interference fitted-bolt clamped double shear lap joints using multiaxial fatigue criteria

    , Article Materials and Design ; Volume 43 , 2013 , Pages 327-336 ; 02641275 (ISSN) Abazadeh, B ; Chakherlou, T. N ; Farrahi, G. H ; Alderliesten, R. C ; Sharif University of Technology
    2013
    Abstract
    In this paper seven different multiaxial fatigue criteria based on stress, strain and energy were employed to estimate the fatigue lives of double shear lap joint specimens of aluminum 2024-T3 with bolt clamped and interference fitted-bolt clamped fastener holes. Detailed finite element (FE) simulations were conducted to obtain the stress and strain distributions in the joint to be used to as basic data in estimating the fatigue lives using multiaxial fatigue criteria. The estimated lives were compared with available experimental fatigue test results to investigate the capability of the criteria in predicting the fatigue lives. The results showed that the accuracy of life estimation for any... 

    A thermodynamically-consistent 3 D constitutive model for shape memory polymers

    , Article International Journal of Plasticity ; Volume 35 , 2012 , Pages 13-30 ; 07496419 (ISSN) Baghani, M ; Naghdabadi, R ; Arghavani, J ; Sohrabpour, S ; Sharif University of Technology
    Elsevier  2012
    Abstract
    The ever increasing applications of shape memory polymers have motivated the development of appropriate constitutive models for these materials. In this work, we present a 3 D constitutive model for shape memory polymers under time-dependent multiaxial thermomechanical loadings in the small strain regime. The derivation is based on an additive decomposition of the strain into six parts and satisfying the second law of thermodynamics in Clausius-Duhem inequality form. In the constitutive model, the evolution laws for internal variables are derived during both cooling and heating thermomechanical loadings. The viscous effects are also fully accounted for in the proposed model. Further, we... 

    A 3-D constitutive model for pressure-dependent phase transformation of porous shape memory alloys

    , Article Journal of the Mechanical Behavior of Biomedical Materials ; Volume 42 , 2015 , Pages 292-310 ; 17516161 (ISSN) Ashrafi, M. J ; Arghavani, J ; Naghdabadi, R ; Sohrabpour, S ; Sharif University of Technology
    Abstract
    Porous shape memory alloys (SMAs) exhibit the interesting characteristics of porous metals together with shape memory effect and pseudo-elasticity of SMAs that make them appropriate for biomedical applications. In this paper, a 3-D phenomenological constitutive model for the pseudo-elastic behavior and shape memory effect of porous SMAs is developed within the framework of irreversible thermodynamics. Comparing to micromechanical and computational models, the proposed model is computationally cost effective and predicts the behavior of porous SMAs under proportional and non-proportional multiaxial loadings. Considering the pressure dependency of phase transformation in porous SMAs, proper... 

    A three-dimensional phenomenological constitutive model for porous shape memory alloys including plasticity effects

    , Article Journal of Intelligent Material Systems and Structures ; Volume 27, Issue 5 , 2016 , Pages 608-624 ; 1045389X (ISSN) Ashrafi, M. J ; Arghavani, J ; Naghdabadi, R ; Auricchio, F ; Sharif University of Technology
    SAGE Publications Ltd  2016
    Abstract
    Porous shape memory alloys are a class of very interesting materials exhibiting features typical of porous metals and of shape memory alloys. In contrast to dense shape memory alloys, considerable plastic strain accumulates in porous shape memory alloys even during phase transformation. Moreover, due to the microstructure of porous materials, phase transformation and plasticity phenomena are significantly pressure-dependent. In this article, we propose a three-dimensional phenomenological constitutive model for the thermomechanical behavior of porous shape memory alloys able to predict shape memory effect, pseudo-elastic behavior and plastic behavior under proportional as well as...