Loading...
Search for: muscle-activation-patterns
0.007 seconds

    Subject-Specific Musculoskeletal Modeling of Gait for a Patient with Torsional Misalignment of Lower Extremity

    , M.Sc. Thesis Sharif University of Technology Ashkbous Esfahani, Maryam (Author) ; Farahmand, Farzam (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    Torsional misalignment of lower extremities is a bone deformity of femur, tibia, knee twist or a complex of all these factors. These deformities affect the patient's gait kinematics. These patients are usually treated with osteotomy surgery with the aim of correction of anatomy. But it doesn't necessarily lead to the modification of gait. Therefor development and application of subject-specific musculoskeletal models to analyze patient's specific condition and predict corrective surgery results are considered. Accordingly, the aim of this project is to create a subject-specific musculoskeletal model for a patient with femoral anteversion in order to predict result of anatomical correction... 

    How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 16, Issue 3 , 2013 , Pages 291-301 ; 10255842 (ISSN) Moghadam, M. N ; Aminian, K ; Asghari, M ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The way central nervous system manages the excess degrees of freedom to solve kinetic redundancy of musculoskeletal system remains an open question. In this study, we utilise the concept of synergy formation as a simplifying control strategy to find the muscle recruitment based on summation of identified muscle synergies to balance the biomechanical demands (biaxial external torque) during an isometric shoulder task. A numerical optimisation-based shoulder model was used to obtain muscle activation levels when a biaxial external isometric torque is imposed at the shoulder glenohumeral joint. In the numerical simulations, 12 different shoulder torque vectors in the transverse plane are... 

    Muscle synergies based on a biomechanical biaxial isometric shoulder model minimizing fatigue

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 797-804 ; 9780791849156 (ISBN) Nassajian Moghadam, M ; Aminian, K ; Asghari, M ; Parnianpour, M ; Sharif University of Technology
    Abstract
    In this study we utilize the concept of synergy formation as a simplifying control strategy to manage the high number of degrees of freedom presented in the maintenance of the posture of the shoulder joint. We address how to find the muscle synergy recruitment map to the biomechanical demands (biaxial external torque) during an isometric shoulder task. We use a numerical optimization based shoulder model to obtain muscle activation levels when a biaxial external isometric torque is exposed at the shoulder glenohumeral joint. In the numerical simulations, different shoulder torque vectors parallel to the horizontal plane are considered. For each selected direction for the torque, the... 

    Estimation of trunk muscle forces using a bio-inspired control strategy implemented in a neuro-osteo-ligamentous finite element model of the lumbar spine

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 8 , 2020 Sharifzadeh Kermani, A ; Arjmand, N ; Vossoughi, G ; Shirazi Adl, A ; Patwardhan, A. G ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Frontiers Media S.A  2020
    Abstract
    Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging problems in occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads during different activities. This study aimed to: (1) develop a novel 2D beam-column finite element control-based model of the lumbar spine and compare its predictions for muscle forces and spinal loads to those resulting from a geometrically matched equilibrium-based model; (2) test, using the foregoing control-based finite element model, the...