Loading...
Search for: muscle-activities
0.012 seconds
Total 28 records

    Subject-Specific Musculoskeletal Modeling of Gait for a Patient with Torsional Misalignment of Lower Extremity

    , M.Sc. Thesis Sharif University of Technology Ashkbous Esfahani, Maryam (Author) ; Farahmand, Farzam (Supervisor) ; Narimani, Roya (Supervisor)
    Abstract
    Torsional misalignment of lower extremities is a bone deformity of femur, tibia, knee twist or a complex of all these factors. These deformities affect the patient's gait kinematics. These patients are usually treated with osteotomy surgery with the aim of correction of anatomy. But it doesn't necessarily lead to the modification of gait. Therefor development and application of subject-specific musculoskeletal models to analyze patient's specific condition and predict corrective surgery results are considered. Accordingly, the aim of this project is to create a subject-specific musculoskeletal model for a patient with femoral anteversion in order to predict result of anatomical correction... 

    Evaluation of trunk muscle activation during the two directions of flexi-bar exercise in people with and without low back pain

    , Article Journal of Modern Rehabilitation ; Volume 16, Issue 4 , 2022 , Pages 304-311 ; 2538385X (ISSN) Herasi, M ; Kahrizi, S ; Hoviattalab, M ; Sharif University of Technology
    Tehran University of Medical Sciences  2022
    Abstract
    Introduction: The flexible-bar with a small amplitude of 5 Hz, which transmits vibrations to the trunk, enables the activation of the core muscles that can be used to rehabilitate subjects with low back pain. Two types of exercise direction that can affect trunk muscles of low back pain subjects similar control group are not known. This study aimed to evaluate and compare exercises with two directions of the oscillating flexible poles in people with and without low back pain (LBP). Materials and Methods: Twelve women with Mean±SD age of 28.75±2.92 years, and body mass index (BMI) of 22.31±2.10 kg/m2 and a history of low back pain, and 12 healthy subjects with Mean±SD age of 28.75±2.49 years... 

    A Biomechanical Model for Evaluation of Shoulder Function: Detecting the
    Relationship Between Muscles Activation Patterns and Shoulder Joint Torques Using Synergy Concept

    , M.Sc. Thesis Sharif University of Technology Nassajian Moghadam, Mohamad Reza (Author) ; Parnianpour, Mohamad (Supervisor) ; Asghari, Mohsen (Supervisor)
    Abstract
    The effects of combined task demands on the way muscles are recruited to balance external loads during posture and movement is of great importance in quantitative analysis of upper arm function. Pain and disability of shoulder joint is becoming more important as population spends more often interacting with computers in seated position and carrying repetitive tasks using upper extremities. Shoulder joint that is more dependent on the muscles for its normal function than other joints such as hip due to its small articular surface and large range motion has been used here to study its coordination during isometric exertions. Since, the numbers of tasks that could be performed are enormous. In... 

    Effect of Iatrogenic Muscle Injuries on Spine Biomechanics During Posterior Lumbar Surgeries Using a Biomechanical Model for Design of Rehabilitation Exercises

    , M.Sc. Thesis Sharif University of Technology Jamshidnezhad, Saman (Author) ; Arjmand, Navid (Supervisor)
    Abstract
    Posterior lumbar surgery is often associated with extensive injuries to back muscles. In this thesis, the effect of such iatrogenic injuries in some patients was examined. For this purpose, the CSA of back muscles in 6 patients were measured using MR scan. To examine any natural change in CSAs of healthy people or instrument errors, same measurement were carried out on 10 healthy volunteers. In addition, a detailed anatomical model of an intact human spine was developed. With the aim of experimental studies and intact model, the post-operative model of patients was also developed. These two models were used to quantizing the change in activity of back muscles during some symmetric, normal... 

    Towards Estimation of Trunk Muscle Forces with a Bio-Inspired Control Strategy of Neuro-Osteoligamentous Finite Element Lumbar Spine Model

    , M.Sc. Thesis Sharif University of Technology Sharifzadeh Kermani, Alireza (Author) ; Arjmand, Navid (Supervisor) ; Vossoughi, Gholamreza (Supervisor) ; Parnianpour, Mohamad (Co-Supervisor)
    Abstract
    Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads during different activities. This study aimed to: 1) develop a novel 2D beam-column finite element control-based model of the lumbar spine and compare its predictions for muscle forces and spinal loads to those resulting from a geometrically-matched equilibrium-based model; 2) test, using the foregoing control-based finite element model, the validity of the... 

    How well do the muscular synergies extracted via non-negative matrix factorisation explain the variation of torque at shoulder joint?

    , Article Computer Methods in Biomechanics and Biomedical Engineering ; Volume 16, Issue 3 , 2013 , Pages 291-301 ; 10255842 (ISSN) Moghadam, M. N ; Aminian, K ; Asghari, M ; Parnianpour, M ; Sharif University of Technology
    2013
    Abstract
    The way central nervous system manages the excess degrees of freedom to solve kinetic redundancy of musculoskeletal system remains an open question. In this study, we utilise the concept of synergy formation as a simplifying control strategy to find the muscle recruitment based on summation of identified muscle synergies to balance the biomechanical demands (biaxial external torque) during an isometric shoulder task. A numerical optimisation-based shoulder model was used to obtain muscle activation levels when a biaxial external isometric torque is imposed at the shoulder glenohumeral joint. In the numerical simulations, 12 different shoulder torque vectors in the transverse plane are... 

    Muscle synergies based on a biomechanical biaxial isometric shoulder model minimizing fatigue

    , Article ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis, ESDA2010, 12 July 2010 through 14 July 2010 ; Volume 1 , 2010 , Pages 797-804 ; 9780791849156 (ISBN) Nassajian Moghadam, M ; Aminian, K ; Asghari, M ; Parnianpour, M ; Sharif University of Technology
    Abstract
    In this study we utilize the concept of synergy formation as a simplifying control strategy to manage the high number of degrees of freedom presented in the maintenance of the posture of the shoulder joint. We address how to find the muscle synergy recruitment map to the biomechanical demands (biaxial external torque) during an isometric shoulder task. We use a numerical optimization based shoulder model to obtain muscle activation levels when a biaxial external isometric torque is exposed at the shoulder glenohumeral joint. In the numerical simulations, different shoulder torque vectors parallel to the horizontal plane are considered. For each selected direction for the torque, the... 

    Role of Intra-Abdominal Pressure and Abdominal Muscle Activities on Spinal Stability and Spinal Loads

    , M.Sc. Thesis Sharif University of Technology Farahmand, Masoud (Author) ; ParnianPour, Mohamad (Supervisor) ; Firoozbakhsh, Keikhosrow (Co-Advisor)
    Abstract
    Spine is one of the most important musculoskeletal systems of the human body. Any problem which is related to this part of human body causes pain and disability. Spinal compression forces are one of the main reasons of this disability and pain. It is assumed that intra-abdominal pressure causes spinal unloading in lifting. Studies usually don’t consider the role of intra-abdominal pressure and introduce it as an effective parameter which can increases spinal stability and influences spinal mechanics.Generation mechanism of intra-abdominal pressure remain enigmatic, studies that advocate the unloading effect of IAP usually consider a raise in IAP to be primarily due to the activity of... 

    Improvement and Manufacture of The Wearable Assistive Device to Support Spine in Static Holding Tasks

    , M.Sc. Thesis Sharif University of Technology Heydari, Hadi (Author) ; Parnianpour, Mohammad (Supervisor) ; Hoviattalab, Maryam (Supervisor)
    Abstract
    One of the most common diseases associated with musculo-skeletal ailment is low back pain which is epidemic among general public so that billions of dollars is spent annually to treat this disease. There are back pain prevention strategies include training on correct lifting, ergonomic tool design, and industrial automation amongst others. In recent years, assistive devices have also been used to prevent back pain. There are assistive devices that can be installed on the body and significantly have reduced forces required for Erector Spinae muscle and Lumbar moments. In this research, at first the anatomy of the spine and muscles and method of processing Electromyography (EMG) of muscles... 

    Effect of considering stability requirements on antagonistic muscle activities using a musculoskeletal model of the human lumbar spine

    , Article 2013 20th Iranian Conference on Biomedical Engineering, ICBME 2013 ; 2013 , Pages 260-264 Hajihoseinali, M ; Nickpour, H ; Arjmand, N ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    The recruitment pattern of trunk muscles is determined using a three-dimensional model of the spine with two joints and six symmetric pairs of muscles in which both equilibrium and stability requirements are satisfied. Model predictions are verified using Anybody Modeling System (AMS) and Abaqus. The model is used to test the hypothesis that antagonistic muscle activities are necessary for the spinal stability. The model with stability constraints predicts muscle activities greater than those predicted without stability consideration. In agreement with experimental data, the stability-based model predicts antagonistic muscle activities. It is shown that spinal stability increases with trunk... 

    Variations in trunk muscle activities and spinal loads following posterior lumbar surgery: A combined in vivo and modeling investigation

    , Article Clinical Biomechanics ; Volume 30, Issue 10 , 2015 , Pages 1036-1042 ; 02680033 (ISSN) Jamshidnejad, S ; Arjmand, N ; Sharif University of Technology
    Abstract
    Background Iatrogenic injuries to paraspinal muscles during posterior lumbar surgery cause a reduction in their contractile cross-sectional area and thus presumably their postoperative activation. This study investigates the effect of such intraoperative injuries on postoperative patterns of muscle activations and spinal loads during various activities using a combined modeling and in vivo MR imaging approach. Methods A three-dimensional, multi-joint, musculoskeletal model was used to estimate pre- and postoperative muscle forces and spinal loads under various activities in upright and flexed postures. According to our in vivo pre- and postoperative (∼ 6 months) measurements in six patients... 

    Estimation of loads on human lumbar spine: A review of in vivo and computational model studies

    , Article Journal of Biomechanics ; Volume 49, Issue 6 , 2016 , Pages 833-845 ; 00219290 (ISSN) Dreischarf, M ; Shirazi Adl, A ; Arjmand, N ; Rohlmann, A ; Schmidt, H ; Wolff Institut, Julius ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    Spinal loads are recognized to play a causative role in back disorders and pain. Knowledge of lumbar spinal loads is required in proper management of various spinal disorders, effective risk prevention and assessment in the workplace, sports and rehabilitation, realistic testing of spinal implants as well as adequate loading in in vitro studies. During the last few decades, researchers have used a number of techniques to estimate spinal loads by measuring in vivo changes in the intradiscal pressure, body height, or forces and moments transmitted via instrumented vertebral implants. In parallel, computational models have been employed to estimate muscle forces and spinal loads under various... 

    Trunk musculoskeletal response in maximum voluntary exertions: a combined measurement-modeling investigation

    , Article Journal of Biomechanics ; 2017 ; 00219290 (ISSN) Ghezelbash, F ; El Ouaaid, Z ; Shirazi Adl, A ; Plamondon, A ; Arjmand, N ; Sharif University of Technology
    Abstract
    Maximum voluntary exertion (MVE) tasks quantify trunk strength and maximal muscle electromyography (EMG) activities with both clinical and biomechanical implications. The aims here are to evaluate the performance of an existing trunk musculoskeletal model, estimate maximum muscle stresses and spinal forces, and explore likely differences between males and females in maximum voluntary exertions. We, therefore, measured trunk strength and EMG activities of 19 healthy right-handed subjects (9 females and 10 males) in flexion, extension, lateral and axial directions. MVEs for all subjects were then simulated in a subject-specific trunk musculoskeletal model, and estimated muscle activities were... 

    The effect of load carrying on the human lower extremity muscle activation during walking

    , Article 5th International Symposium on Mechatronics and its Applications, ISMA 2008, Amman, 27 May 2008 through 29 May 2008 ; October , 2008 ; 9781424420346 (ISBN) Selk Ghafari, A ; Meghdari, A ; Vossoughi, G. R ; Sharif University of Technology
    2008
    Abstract
    This paper focuses on the biomechanical aspects of human load carrying in order to provide a physiological framework for designing the more anthropometric assistive systems. An 8degrees-of-freedom musculoskeletal model with twenty functional muscle groups in the lower extremity was developed to simulate the movement in sagittal plane. Inverse dynamics based optimization approach was employed to estimate the excitation level of the muscles. Activation patterns of the muscles illustrate the importance role of the soleus in supporting of the body during load carrying. Also power distribution analysis of the muscles reveals that the plantar flexors of the ankle, extensors of the knee and hip... 

    Muscular activity comparison between non-amputees and transfemoral amputees during normal transient-state walking speed

    , Article Medical Engineering and Physics ; Volume 95 , 2021 , Pages 39-44 ; 13504533 (ISSN) Mehryar, P ; Shourijeh, M. S ; Rezaeian, T ; Khandan, A. R ; Messenger, N ; O'Connor, R ; Farahmand, F ; Dehghani Sanij, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Research question: Would there be differences in muscle activation between healthy subjects’ (HS) dominant leg and transfemoral amputees’ (TFA) intact-leg/contralateral-limb (IL) during normal transient-state walking speed? Methods: The muscle activation patterns are obtained by calculating the linear envelope of the EMG signals for each group. The activation patterns/temporal changes are compared between-population using statistical parametric mapping (SPM). Results: Individual muscle activity showed significant differences in all muscles except vastus lateralis (VL), semitendinosus (SEM) and tensor fascia latae (TFL) activities. Significance: The information could be used by the therapists... 

    Design and Fabrication of Amotorized Walker with Sit-to-Stand Ability

    , M.Sc. Thesis Sharif University of Technology Kousha, Ebrahim (Author) ; Farahmand, Farzam (Supervisor) ; Durali, Mohammad (Supervisor) ; Ahmadi Bani, Monireh (Co-Supervisor)
    Abstract
    The purpose of this project is to design and build a motorized walker with sit to stand ability, by means of which the user can get up from a chair or the edge of the bed and stand with complete independence; Relying on it, the patient could walk easily and finally sit down on the chair, the edge of the bed, or the toilet seat. For this purpose, the conducted researches and previously built devices were studied and the strengths and weaknesses of each were examined. The stages of conceptual design including the design of the sit to stand mechanism, the design of the structure and finally the control algorithm were completed, then the detailed design of the mentioned topics was carried out.... 

    The effects of intra-abdominal pressure on the stability and unloading of the spine

    , Article Journal of Mechanics in Medicine and Biology ; Volume 12, Issue 1 , 2012 ; 02195194 (ISSN) Mokhtarzadeh, H ; Farahmand, F ; Shirazi Adl, A ; Arjmand, N ; Malekipour, F ; Parnianpour, M ; Sharif University of Technology
    Abstract
    In spite of earlier experimental and modeling studies, the relative role of the intra-abdominal pressure (IAP) in spine mechanics has remained controversial. This study employs simple analytical and finite element (FE) models of the spine and its surrounding structures to investigate the contribution of IAP to spinal loading and stability. The analytical model includes the abdominal cavity surrounded by muscles, lumbar spine, rib cage and pelvic ring. The intra-abdominal cavity and its surrounding muscles are represented by a thin deformable cylindrical membrane. Muscle activation levels are simulated by changing the Young's modulus of the membrane in the direction of muscle fibers, yielding... 

    Control of human spine in repetitive sagittal plane flexion and extension motion using a CPG based ANN approach

    , Article Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS ; 2011 , Pages 8146-8149 ; 1557170X (ISSN) ; 9781424441211 (ISBN) Sedighi, A ; Sadati, N ; Nasseroleslami, B ; Vakilzadeh, M. K ; Narimani, R ; Parnianpour, M ; Sharif University of Technology
    Abstract
    The complexity associated with musculoskeletal modeling, simulation, and neural control of the human spine is a challenging problem in the field of biomechanics. This paper presents a novel method for simulation of a 3D trunk model under control of 48 muscle actuators. Central pattern generators (CPG) and artificial neural network (ANN) are used simultaneously to generate muscles activation patterns. The parameters of the ANN are updated based on a novel learning method used to address the kinetic redundancy due to presence of 48 muscles driving the trunk. We demonstrated the feasibility of the proposed method with numerical simulation of experiments involving rhythmic motion between upright... 

    Estimation of human lower extremity musculoskeletal conditions during backpack load carrying

    , Article Scientia Iranica ; Volume 16, Issue 5 B , 2009 , Pages 451-462 ; 10263098 (ISSN) Selk Ghafari, A ; Meghdari, A ; Vossughi, G. R ; Sharif University of Technology
    2009
    Abstract
    This paper focuses on the biomechanical aspects of the human lower extremity loading condition during backpack load carrying. A biomechanical framework was generated with the aim of employing a block-oriented structure of Simulink integrated with the Virtual Reality Toolbox of MATLAB software to provide a simulation study of the musculoskeletal system in a virtual environment. In this case, a ten-degrees-of-freedom musculoskeletal model actuated with sixteen muscles in each leg was utilized to simulate movement in the sagittal plane. An inverse dynamics based optimization approach was employed to estimate the excitation level of the muscles. In addition, distributions of the mechanical power... 

    Estimation of trunk muscle forces using a bio-inspired control strategy implemented in a neuro-osteo-ligamentous finite element model of the lumbar spine

    , Article Frontiers in Bioengineering and Biotechnology ; Volume 8 , 2020 Sharifzadeh Kermani, A ; Arjmand, N ; Vossoughi, G ; Shirazi Adl, A ; Patwardhan, A. G ; Parnianpour, M ; Khalaf, K ; Sharif University of Technology
    Frontiers Media S.A  2020
    Abstract
    Low back pain (LBP), the leading cause of disability worldwide, remains one of the most common and challenging problems in occupational musculoskeletal disorders. The effective assessment of LBP injury risk, and the design of appropriate treatment modalities and rehabilitation protocols, require accurate estimation of the mechanical spinal loads during different activities. This study aimed to: (1) develop a novel 2D beam-column finite element control-based model of the lumbar spine and compare its predictions for muscle forces and spinal loads to those resulting from a geometrically matched equilibrium-based model; (2) test, using the foregoing control-based finite element model, the...