Search for: muscle-perfusion
0.007 seconds

    The influence of temperature alterations on eccentric contraction-induced isometric force and desmin loss in ratmedial gastrocnemius muscle

    , Article Journal of Medical Sciences ; Volume 8, Issue 2 , 2008 , Pages 162-169 ; 16824474 (ISSN) Vasaghi Gharamaleki, B ; Keshavarz, M ; Gharibzadeh, S ; Sotodeh, M ; Marvi, H ; Mosayebnejad, J ; Ebrahimi Takamjani, I ; Sharif University of Technology
    In this study isolated perfused rat muscle was used to examine the direct effect of temperature changes on the eccentric contraction-induced force and desmin loss. The left medial gastrocnemius muscle was separated and the entire lower limb was transferred into a prewarmed (35°C) organ bath. Temperature was adjusted to 31 or 39°C before and during eccentric contractions. Maximal isometric force and desmin loss were measured after 15 isometric or eccentric contractions. According to our data, organ bath temperature changes before or during eccentric contractions had no significant effect on force loss. However, a strong correlation between desmin loss and temperature changes before (r = 0.93,... 

    Cardiac contraction motion compensation in gated myocardial perfusion SPECT: a comparative study

    , Article Physica Medica ; Volume 49 , 2018 , Pages 77-82 ; 11201797 (ISSN) Salehi, N ; Rahmim, A ; Fatemizadeh, E ; Akbarzadeh, A ; Farahani, M. H ; Farzanefar, S ; Ay, M. R ; Sharif University of Technology
    Associazione Italiana di Fisica Medica  2018
    Introduction: Cardiac contraction significantly degrades quality and quantitative accuracy of gated myocardial perfusion SPECT (MPS) images. In this study, we aimed to explore different techniques in motion-compensated temporal processing of MPS images and their impact on image quality and quantitative accuracy. Material and method: 50 patients without known heart condition underwent gated MPS. 3D motion compensation methods using Motion Freezing by Cedars Sinai (MF), Log-domain Diffeomorphic Demons (LDD) and Free-Form Deformation (FFD) were applied to warp all image phases to fit the end-diastolic (ED) phase. Afterwards, myocardial wall thickness, myocardial to blood pool contrast, and...