Loading...
Search for: musculo-skeletal-injuries
0.011 seconds

    Design and evaluation of a novel triaxial isometric trunk muscle strength measurement system

    , Article Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine ; Volume 223, Issue 6 , 2015 , Pages 755-766 ; 09544119 (ISSN) Azghani, M. R ; Farahmand, F ; Meghdari, A ; Vossoughi, G ; Parnianpour, M ; Sharif University of Technology
    SAGE Publications Ltd  2015
    Abstract
    Maximal strength measurements of the trunk have been used to evaluate the maximum functional capacity of muscles and the potential mechanical overload or overuse of the lumbar spine tissues in order to estimate the risk of developing musculoskeletal injuries. A new triaxial isometric trunk strength measurement system was designed and developed in the present study, and its reliability and performance was investigated. The system consisted of three main revolute joints, equipped with torque sensors, which intersect at L5 - S1 and adjustment facilities to fit the body anthropometry and to accommodate both symmetric and asymmetric postures in both seated and standing positions. The dynamics of... 

    Trunk motion system (TMS) using printed body worn sensor (BWS) via data fusion approach

    , Article Sensors (Switzerland) ; Volume 17, Issue 1 , 2017 ; 14248220 (ISSN) Mokhlespour Esfahani, M. I ; Zobeiri, O ; Moshiri, B ; Narimani, R ; Mehravar, M ; Rashedi, E ; Parnianpour, M ; Sharif University of Technology
    MDPI AG  2017
    Abstract
    Human movement analysis is an important part of biomechanics and rehabilitation, for which many measurement systems are introduced. Among these, wearable devices have substantial biomedical applications, primarily since they can be implemented both in indoor and outdoor applications. In this study, a Trunk Motion System (TMS) using printed Body‐Worn Sensors (BWS) is designed and developed. TMS can measure three‐dimensional (3D) trunk motions, is lightweight, and is a portable and non‐invasive system. After the recognition of sensor locations, twelve BWSs were printed on stretchable clothing with the purpose of measuring the 3D trunk movements. To integrate BWSs data, a neural network data... 

    Optimum mechanism for rehabilitation of fingers

    , Article 5th RSI International Conference on Robotics and Mechatronics, IcRoM 2017, 25 October 2017 through 27 October 2017 ; 2018 , Pages 451-456 ; 9781538657034 (ISBN) Yekta, R ; Zohoor, H ; Shirzadi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    Nowadays, with the advancement of technology, humans are looking for ways to cure various diseases. Meanwhile, musculoskeletal injuries usually have a long treatment period. Therefore, in recent years, Researchers working one exoskeleton with rehabilitation application which conduct physiotherapy tasks. In current study, a portable two degree of freedom hand exoskeleton is designed which its mechanism is a combination of cable and link mechanism, MCP1 1Metacarpophalangeal joint between metacarpal and proximal phalanges joints move by link mechanism, DIP2 2Distal interphalangeal joint between proximal phalanges and middle phalanges and PIP3 3Proximal interphalangeal joint between middle... 

    A novel coupled musculoskeletal finite element model of the spine – Critical evaluation of trunk models in some tasks

    , Article Journal of Biomechanics ; Volume 119 , 2021 ; 00219290 (ISSN) Rajaee, M. A ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled...