Loading...
Search for: musculoskeletal-system-parameters
0.005 seconds

    Dynamic comparison of segmentary scapulohumeral rhythm between athletes with and without impingement syndrome

    , Article Iranian Journal of Radiology ; Vol. 11, issue. 2 , 2014 Taghizadeh Delkhoush, C ; Maroufi, N ; Ebrahimi Takamjani, I ; Farahmand, F ; Shakourirad, A ; Haghani, H ; Sharif University of Technology
    Abstract
    Background: Patients who have shoulder pain usually have compensatory or contributory deviation of shoulder motion during arm elevation. In the traditional scapulohumeral rhythm, the share of the acromioclavicular (AC) and the sternoclavicular (SC) joint movements and also the role of AC internal rotation angle are unknown. Objectives: The main purpose of this study was to measure and compare the segmentary scapulohumeral rhythm (SSHR) during scapular arm elevation at a steady rotational speed in athletes with and without impingement syndrome. Patients and Methods: Using a speedometer, the maximum speed of arm elevation was measured in 21 men in each of the involved and uninvolved groups.... 

    P 043 – Center of pressure progression and ground reaction forces are altered in cerebral palsy crouch gait

    , Article Gait and Posture ; Volume 65 , 2018 , Pages 307-308 ; 09666362 (ISSN) Salehi, A ; Khandan, A ; Arab Baniasad, M ; Baghdadi, S ; Farahmand, F ; Zohoor, H ; Sharif University of Technology
    Elsevier B.V  2018

    Comparison of mechanical properties in interference screw fixation technique and organic anterior cruciate ligament reconstruction method: a biomechanical study

    , Article BMC Musculoskeletal Disorders ; Volume 22, Issue 1 , 2021 ; 14712474 (ISSN) Borjali, A ; Nourani, A ; Moeinnia, H ; Mohseni, M ; Korani, H ; Ghias, N ; Chizari, M ; Sharif University of Technology
    BioMed Central Ltd  2021
    Abstract
    Background: Bone and Site Hold Tendon Inside (BASHTI) technique is an organic implant-less technique for anterior cruciate ligament (ACL) reconstruction with some clinical advantages, such as speeding up the healing process, over implantable techniques. The study aims to compare the mechanical properties of BASHTI technique with the conventional interference screw technique. Methods: To investigate the mechanical properties, 20 in-vitro experimental tests were conducted. Synthetic dummy bone, along with fresh digital bovine tendons, as a graft, were used for experiments. Three loading steps were applied to all specimens, including a preconditioning, a main cyclic, and a pull-out loading.... 

    Disc size markedly influences concentration profiles of intravenously administered solutes in the intervertebral disc: A computational study on glucosamine as a model solute

    , Article European Spine Journal ; Vol. 23, issue. 4 , April , 2014 , p. 715-723 Motaghinasab, S ; Shirazi-Adl, A ; Parnianpour, M ; Urban, J. P. G ; Sharif University of Technology
    Abstract
    Purpose: Tests on animals of different species with large differences in intervertebral disc size are commonly used to investigate the therapeutic efficacy of intravenously injected solutes in the disc. We hypothesize that disc size markedly affects outcome. Methods: Here, using a small non-metabolized molecule, glucosamine (GL) as a model solute, we calculate the influence of disc size on transport of GL into rat, rabbit, dog and human discs for 10 h post intravenous-injection. We used transient finite element models and considered an identical GL supply for all animals. Results: Huge effects of disc size on GL concentration profiles were found. Post-injection GL concentration in the rat... 

    Normal postural responses preceding shoulder flexion: Co-activation or asymmetric activation of transverse abdominis?

    , Article Journal of Back and Musculoskeletal Rehabilitation ; Vol. 27, issue. 4 , 2014 , p. 545-551 Davarian, S ; Maroufi, N ; Ebrahimi, E ; Parnianpour, M ; Farahmand, F ; Sharif University of Technology
    Abstract
    BACKGROUND AND OBJECTIVES: It is suggested that activation of the transverse abdominis muscle has a stabilizing effect on the lumbar spine by raising intra-abdominal pressure without added disc compression. However, its feedforward activity has remained a controversial issue. In addition, research regarding bilateral activation of trunk muscles during a unilateral arm movement is limited. The aim of this study was to evaluate bilateral anticipatory activity of trunk muscles during unilateral arm flexion.MATERIALS AND METHODS: Eighteen healthy subjects (aged 25 ± 3.96 years) participated in this study and performed 10 trials of rapid arm flexion in response to a visual stimulus. The... 

    Rehabilitation after ACL injury: A fluoroscopic study on the effects of type of exercise on the knee sagittal plane arthrokinematics

    , Article BioMed Research International ; Volume 2013 , July , 2013 ; 23146133 (ISSN) Norouzi, S ; Esfandiarpour, F ; Shakourirad, A ; Salehi, R ; Akbar, M ; Farahmand, F ; Sharif University of Technology
    2013
    Abstract
    A safe rehabilitation exercise for anterior cruciate ligament (ACL) injuries needs to be compatible with the normal knee arthrokinematics to avoid abnormal loading on the joint structures. The objective of this study was to measure the amount of the anterior tibial translation (ATT) of the ACL-deficient knees during selective open and closed kinetic chain exercises. The intact and injured knees of fourteen male subjects with unilateral ACL injury were imaged using uniplanar fluoroscopy, while the subjects performed forward lunge and unloaded/loaded open kinetic knee extension exercises. The ATTs were measured from fluoroscopic images, as the distance between the tibial and femoral reference... 

    Trunk muscles strength and endurance in chronic low back pain patients with and without clinical instability

    , Article Journal of Back and Musculoskeletal Rehabilitation ; Volume 25, Issue 2 , 2012 , Pages 123-129 ; 10538127 (ISSN) Davarian, S ; Maroufi, N ; Ebrahimi, I ; Farahmand, F ; Parnianpour, M ; Sharif University of Technology
    2012
    Abstract
    Objectives: Previous research has shown inconsistent findings regarding muscle endurance in chronic low back pain (CLBP). Questions also remain about muscle endurance in patients with clinical instability. The aim of this study was to investigate trunk muscles strength and endurance in CLBP patients with and without clinical instability. Methods: 32 CLBP patients (15 with and 17 without clinical instability) and 39 matched healthy subjects participated in this study. The standing extension test was performed to assess the strength and endurance of the lumbar extensors while recording their electromyographic activity. The patients' disability was evaluated using the Oswestry and Roland-Morris... 

    Biomechanical analysis of the pelvis angular excursion in sagittal plane in response to asymmetric leg loading tasks in females with and without nonspecific chronic low back pain

    , Article Journal of Biomedical Physics and Engineering ; Volume 11, Issue 3 , 2021 , Pages 367-376 ; 22517200 (ISSN) Meftahi, N ; Kamali, F ; Parni Anpour, M ; Davoudi, M ; Sharif University of Technology
    Shriaz University of Medical Sciences  2021
    Abstract
    Background: Controlling pelvic excursions is the focus of stabilization exercises such as legs loading tasks in rehabilitation of non-specific chronic low back pain (NSCLBP) patients. Progression of these exercises is based on the ability to perform tasks with minimal sagittal pelvic excursions. In spite of emphasis on minimizing pelvic motions, no previous studies have investigated kinematic analysis of the pelvic excursions during leg loading exercises in NSCLBP patients. Objective: This study aims to investigate the sagittal pelvis excursion during performing asymmetric leg loading tasks in individuals with and without NSCLBP. Material and Methods: In this cross-sectional study, kinematic... 

    Trunk muscle fatigue and its implications in EMG-assisted biomechanical modeling

    , Article International Journal of Industrial Ergonomics ; Volume 43, Issue 5 , 2013 , Pages 425-429 ; 01698141 (ISSN) Haddad, O ; Mirka, G.A ; Sharif University of Technology
    2013
    Abstract
    Muscle fatigue affects the underlying EMG-force relationship on which EMG-assisted biomechanical models rely. The aim of this study was to evaluate the impact of short duration muscle fatigue on the muscle gain value. Participants performed controlled, isometric trunk extension exertions at 10, 20, and 30 degrees of trunk flexion and controlled isokinetic trunk extension exertions at 5 and 15°/sec on five separate days. Fatigue of the lumbar extensors was generated by moderate-intensity, trunk extension exertions. Participants performed controlled test contractions at defined intervals throughout the fatiguing bout and the EMG activities of trunk muscles were collected. These EMG data were... 

    Is there a reliable and invariant set of muscle synergy during isometric biaxial trunk exertion in the sagittal and transverse planes by healthy subjects?

    , Article Journal of Biomechanics ; Volume 48, Issue 12 , Sep , 2015 , Pages 3234-3241 ; 00219290 (ISSN) Sedaghat Nejad, E ; Mousavi, S. J ; Hadizadeh, M ; Narimani, R ; Khalaf, K ; Campbell Kyureghyan, N ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    It has been suggested that the central nervous system simplifies muscle control through basic units, called synergies. In this study, we have developed a novel target-matching protocol and used non-negative matrix factorization (NMF) technique to extract trunk muscle synergies and corresponding torque synergies. Isometric torque data at the L5/S1 level and electromyographic patterns of twelve abdominal and back muscles from twelve healthy participants (five females) were simultaneously recorded. Each participant performed a total number of 24 isometric target-matching tasks using 12 different angular directions and 2 levels of uniaxial and biaxial exertions. Within- and between-subject... 

    Comparison of trunk muscle forces, spinal loads and stability estimated by one stability- and three EMG-assisted optimization approaches

    , Article Medical Engineering and Physics ; Volume 37, Issue 8 , 2015 , Pages 792-800 ; 13504533 (ISSN) Mohammadi, Y ; Arjmand, N ; Shirazi-Adl, A ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Various hybrid EMG-assisted optimization (EMGAO) approaches are commonly used to estimate muscle forces and joint loads of human musculoskeletal systems. Use of EMG data and optimization enables the EMGAO models to account for inter- and intra-individual variations in muscle recruitments while satisfying equilibrium requirements. Due to implications in ergonomics/prevention and rehabilitation/treatment managements of low-back disorders, there is a need to evaluate existing approaches. The present study aimed to compare predictions of three different EMGAO and one stability-based optimization (OPT) approaches for trunk muscle forces, spinal loads, and stability. Identical measured... 

    The effect of parameters of equilibrium-based 3-D biomechanical models on extracted muscle synergies during isometric lumbar exertion

    , Article Journal of Biomechanics ; Volume 49, Issue 6 , 2016 , Pages 967-973 ; 00219290 (ISSN) Eskandari, A. H ; Sedaghat Nejad, E ; Rashedi, E ; Sedighi, A ; Arjmand, N ; Parnianpour, M ; Sharif University of Technology
    Elsevier Ltd 
    Abstract
    A hallmark of more advanced models is their higher details of trunk muscles represented by a larger number of muscles. The question is if in reality we control these muscles individually as independent agents or we control groups of them called "synergy". To address this, we employed a 3-D biomechanical model of the spine with 18 trunk muscles that satisfied equilibrium conditions at L4/5, with different cost functions. The solutions of several 2-D and 3-D tasks were arranged in a data matrix and the synergies were computed by using non-negative matrix factorization (NMF) algorithms. Variance accounted for (VAF) was used to evaluate the number of synergies that emerged by the analysis, which... 

    Effect of vibration on postural control and gait of elderly subjects: a systematic review

    , Article Aging Clinical and Experimental Research ; Volume 30, Issue 7 , 2018 , Pages 713-726 ; 15940667 (ISSN) Aboutorabi, A ; Arazpour, M ; Bahramizadeh, M ; Farahmand, F ; Fadayevatan, R ; Sharif University of Technology
    Springer International Publishing  2018
    Abstract
    Background and aim: Gait and balance disorders are common in the elderly populations, and their prevalence increases with age. This systematic review was performed to summarize the current evidence for subthreshold vibration interventions on postural control and gait in elderly. Method: A review of intervention studies including the following words in the title/abstract: insole, foot and ankle appliances, vibration, noise and elderly related to balance and gait. Databases searched included PubMed, ISI Web of Knowledge, Ovid, Scopus, and Google Scholar. Fifteen articles were selected for final evaluation. The procedure was followed using the preferred reporting items for systematic reviews... 

    Biomechanical response of intact, degenerated and repaired intervertebral discs under impact loading – Ex-vivo and In-Silico investigation

    , Article Journal of Biomechanics ; Volume 70 , March , 2018 , Pages 26-32 ; 00219290 (ISSN) Nikkhoo, M ; Wang, J. L ; Parnianpour, M ; El-Rich, M ; Khalaf, K ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Understanding the effect of impact loading on the mechanical response of the intervertebral disc (IVD) is valuable for investigating injury mechanisms and devising effective therapeutic modalities. This study used 24 porcine thoracic motion segments to characterize the mechanical response of intact (N = 8), degenerated (Trypsin-denatured, N = 8), and repaired (Genepin-treated, N = 8) IVDs subject to impact loading. A meta-model analysis of poroelastic finite element simulations was used in combination with ex-vivo creep and impact tests to extract the material properties. Forward analyses using updated specimen-specific FE models were performed to evaluate the effect of impact duration. The... 

    Spinal segment ranges of motion, movement coordination, and three-dimensional kinematics during occupational activities in normal-weight and obese individuals

    , Article Journal of Biomechanics ; Volume 123 , 2021 ; 00219290 (ISSN) Ghasemi, M ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Measurements of spinal segment ranges of motion (RoMs), movement coordination, and three-dimensional kinematics during occupational activities have implications in occupational/clinical biomechanics. Due to the large amount of adipose tissues, obese individuals may have different RoMs, lumbopelvic coordination, and kinematics than normal-weight ones. We aimed to measure/compare trunk, lumbar, and pelvis primary RoMs in all anatomical planes/directions, lumbopelvic ratios (lumbar to pelvis rotations at different trunk angles) in all anatomical planes/directions and three-dimensional spine kinematics during twelve symmetric/asymmetric statics load-handling activities in healthy normal-weight... 

    A novel coupled musculoskeletal finite element model of the spine – Critical evaluation of trunk models in some tasks

    , Article Journal of Biomechanics ; Volume 119 , 2021 ; 00219290 (ISSN) Rajaee, M. A ; Arjmand, N ; Shirazi Adl, A ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Spine musculoskeletal (MS) models make simplifying assumptions on the intervertebral joint degrees-of-freedom (rotational and/or translational), representation (spherical or beam-like joints), and properties (linear or nonlinear). They also generally neglect the realistic structure of the joints with disc nuclei/annuli, facets, and ligaments. We aim to develop a novel MS model where trunk muscles are incorporated into a detailed finite element (FE) model of the ligamentous T12-S1 spine thus constructing a gold standard coupled MS-FE model. Model predictions are compared under some tasks with those of our earlier spherical joints, beam joints, and hybrid (uncoupled) MS-FE models. The coupled... 

    Revised NIOSH Lifting Equation May generate spine loads exceeding recommended limits

    , Article International Journal of Industrial Ergonomics ; Volume 47 , 2015 , Pages 1-8 ; 01698141 (ISSN) Arjmand, N ; Amini, M ; Shirazi Adl, A ; Plamondon, A ; Parnianpour, M ; Sharif University of Technology
    Elsevier  2015
    Abstract
    The 1991 NIOSH Lifting Equation (NLE) is widely used to assess the risk of injury to spine by providing estimates of the recommended weight limit (RWL) in hands. The present study uses the predictive equations developed based on a detailed trunk musculoskeletal biomechanical model to verify whether the RWL generates L5-S1 loads within the limits (e.g., 3400N for compression recommended by NIOSH and 1000N for shear recommended in some studies). Fifty lifting activities are simulated here to evaluate the RWL by the NLE and the L5-S1 loads by the predictive equations. In lifting activities involving moderate to large forward trunk flexion, the estimated RWL generates L5-S1 spine loads exceeding... 

    Comparative evaluation of six quantitative lifting tools to estimate spine loads during static activities

    , Article Applied Ergonomics ; Volume 48 , 2015 , Pages 22-32 ; 00036870 (ISSN) Rajaee, M. A ; Arjmand, N ; Shirazi Adl, A ; Plamondon, A ; Schmidt, H ; Sharif University of Technology
    Elsevier Ltd  2015
    Abstract
    Different lifting analysis tools are commonly used to assess spinal loads and risk of injury. Distinct musculoskeletal models with various degrees of accuracy are employed in these tools affecting thus their relative accuracy in practical applications. The present study aims to compare predictions of six tools (HCBCF, LSBM, 3DSSPP, AnyBody, simple polynomial, and regression models) for the L4-L5 and L5-S1 compression and shear loads in twenty-six static activities with and without hand load. Significantly different spinal loads but relatively similar patterns for the compression (R2>0.87) were computed. Regression models and AnyBody predicted intradiscal pressures in closer agreement with... 

    Comparison of different lifting analysis tools in estimating lower spinal loads – Evaluation of NIOSH criterion

    , Article Journal of Biomechanics ; Volume 112 , 2020 Ghezelbash, F ; Shirazi Adl, A ; Plamondon, A ; Arjmand, N ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Excessive loads on the human spine is recognized as a risk factor for back injuries/pain. Various lifting analysis tools such as musculoskeletal models, regression equations and NIOSH (National Institute for Occupational Safety and Health) lifting equation (NLE) have been proposed to evaluate and mitigate associated risks during manual material handling activities. Present study aims to compare predicted spinal loads from 5 different lifting analysis tools as well as to critically evaluate the NIOSH recommended weight limit (RWL). Spinal loads were estimated under different symmetric/asymmetric lifting tasks in which hand-load mass at each task was set based on RWL from NLE. Estimated...