Loading...
Search for: n-dimensional-space
0.004 seconds

    Fuzzy sliding mode control of multi-agent systems using artificial potentials

    , Article ASME International Mechanical Engineering Congress and Exposition, Proceedings (IMECE), 12 November 2010 through 18 November 2010, Vancouver, BC ; Volume 8, Issue PARTS A AND B , 2010 , Pages 901-909 ; 9780791844458 (ISBN) Roshanghalb, F ; Mortazavi, J ; Alasty, A ; Sayyaadi, H ; Sharif University of Technology
    Abstract
    In this paper a fuzzy control strategy of autonomous multiagent systems is presented. The main purpose is to obtain an improvement on the results of designed sliding mode controllers in previous articles using supervisory fuzzy controller. Similarly, a quasi-static swarm model in ndimensional space is introduced wherein the inter-individual interactions are based on artificial potential functions; and the motions of members are in direction with the negative gradient of the combined potentials which are the result of a balance between inter-individual interactions and the simultaneous interactions of the swarm members with their environment. Then a general model for vehicle dynamics of each... 

    Swarm aggregation using emotional learning based intelligent controller

    , Article 2009 6th International Symposium on Mechatronics and its Applications ; 2009 , Article number 5164827 ; ISBN: 9781424434817 Etemadi, S ; Vatankhah, R ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    Abstract
    In this paper, we consider a control strategy of multi-robot systems, or simply, swarms, based on emotional control technique. First, we briefly discuss a "kinematic" swarm model in n-dimensional space introduced in an earlier paper. In that model, motion of every swarm member is governed by predefined inter-individual interactions. Limitations of every member's field of view are also considered in that model. After that, we consider a general model for vehicle dynamics of each swarm member, and use emotional control theory to force their motion to obey the dynamics of the kinematic model. Based on the kinematic model, stability (cohesion) analysis is performed and coordination controller.is... 

    Swarm aggregation using emotional learning based intelligent controller

    , Article 2009 6th International Symposium on Mechatronics and its Applications, ISMA 2009, Sharjah, 23 March 2009 through 26 March 2009 ; 2009 ; 9781424434817 (ISBN) Etemadi, S ; Vatankhah, R ; Alasty, A ; Vossoughi, G ; Sharif University of Technology
    2009
    Abstract
    In this paper, we consider a control strategy of multi-robot systems, or simply, swarms, based on emotional control technique. First, we briefly discuss a "kinematic" swarm model in n-dimensional space introduced in an earlier paper. In that model, motion of every swarm member is governed by predefined inter-individual interactions. Limitations of every member's field of view are also considered in that model. After that, we consider a general model for vehicle dynamics of each swarm member, and use emotional control theory to force their motion to obey the dynamics of the kinematic model. Based on the kinematic model, stability (cohesion) analysis is performed and coordination controller is...