Loading...
Search for:
n-hydroxysuccinimide
0.005 seconds
In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters
, Article Chemical Engineering Communications ; Volume 208, Issue 7 , 2021 , Pages 976-992 ; 00986445 (ISSN) ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
Taylor and Francis Ltd
2021
Abstract
This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties...
In-situ crosslinking of electrospun gelatin-carbodiimide nanofibers: fabrication, characterization, and modeling of solution parameters
, Article Chemical Engineering Communications ; 2020 ; Alemzadeh, I ; Vossoughi, M ; Shamloo, A ; Sharif University of Technology
Taylor and Francis Ltd
2020
Abstract
This work has focused on in-situ crosslinking of gelatin (G) to produce electrospun scaffold with improved fiber morphology retention and mechanical properties. As per this approach, we prepared G nanofibers through mixing G, 1-ethyl-3-(3 dimethylaminopropyl) carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) in the new solvent system. Response surface methodology (RSM) was employed to study the influence of solution parameters on fiber diameter. The morphological structure was examined, and the appropriate level of setting to obtain smooth fibers with a favorable diameter was reported. Results revealed using EDC/NHS for in-situ crosslinking improves the mechanical properties...
Immobilization of laccase from trametes hirsuta onto CMC coated magnetic nanoparticles
, Article International Journal of Engineering, Transactions A: Basics ; Volume 33, Issue 4 , 2020 , Pages 513-519 ; Ghazvini, S ; Hejazi, S ; Yaghmaei, S ; Ghobadi Nejad, Z ; Sharif University of Technology
Materials and Energy Research Center
2020
Abstract
In this study Fe3O4/CMC magnetic nanoparticles were synthesized through co-precipitation method. Afterward, laccase from Trametes hirsuta was immobilized onto Carboxymethyl cellulose (CMC)-coated magnetic Fe3O4 nanoparticles by covalent bonding between carboxyl groups of carboxymethyl cellulose and amine group of laccases. Also, the resulted magnetic nanoparticles and immobilized laccase were characterized by Fourier-transform infrared spectroscopy (FTIR), scanning electron microscope (SEM) and dynamic light scattering (DLS) analysis. Moreover, the vital factors in enzyme immobilization, such as contact time, amount of N-hydroxysuccinimide (NHS), and the amount of nanoparticles were...