Loading...
Search for: nano-powders
0.005 seconds
Total 35 records

    Electrophoretic deposition of titanium dioxide nano-powders films in isopropanol as a solvent

    , Article International Journal of Modern Physics B ; Volume 22, Issue 18-19 , 2008 , Pages 2989-2994 ; 02179792 (ISSN) Ghorbani, M ; Roushan Afshar, M ; Sharif University of Technology
    World Scientific Publishing Co. Pte Ltd  2008
    Abstract
    In this study, titanium dioxide nano powders were electrophoretically deposited on the stainless steel in Isopropanol and Triethanolamine as a solvent and dispersant, respectively. The effects of deposition parameters including deposition voltage (5 to 20 V) and deposition time (5 to 60 s) on the microstructure and surface topography were examined by scanning electron microscope (SEM) and scanning probe microscope (SPM), respectively. In addition, the effects of these deposition parameters on packing density were investigated. This research revealed that substrate surface is fully covered with increasing deposition voltage and deposition time. Therefore packing density of deposited films is... 

    Transesterification of canola oil to biodiesel using CaO/Talc nanopowder as a mixed oxide catalyst

    , Article Chemical Engineering and Technology ; Volume 40, Issue 10 , 2017 , Pages 1923-1930 ; 09307516 (ISSN) Maleki, H ; Kazemeini, M ; Bastan, F ; Sharif University of Technology
    Abstract
    A series of heterogeneous catalysts including different molar ratios of CaO/talc was synthesized to study the transesterification reaction of canola oil and methanol under different reaction conditions. Characterization and kinetic results revealed that the activity of this catalyst was enhanced due to the increase of CaO/talc molar ratio value leading to an improvement in the biodiesel production. Moreover, the effect of various parameters on the activity of the undertaken catalysts was studied in order to determine the optimum process conditions. Leaching measurements and the durability of the CaO/talc catalyst under several reaction cycles were evaluated and proved it to be a stable... 

    Optimized experimental design for natural clinoptilolite zeolite ball milling to produce nano powders

    , Article Powder Technology ; Volume 203, Issue 2 , November , 2010 , Pages 389-396 ; 00325910 (ISSN) Charkhi, A ; Kazemian, H ; Kazemeini, M ; Sharif University of Technology
    2010
    Abstract
    Nano powder of natural clinoptilolite zeolite was mechanically prepared by using a planetary ball mill. Statistical experimental design was applied to optimize wet and dry milling of clinoptilolite zeolite. To determine appropriate milling conditions with respect to the final product crystallinity, particle size and distribution, different milling parameters such as dry and wet milling durations, rotational speed, balls to powder ratio and water to powder ratio (for the wet milling) were investigated. Laser beam scattering technique, scanning electron microscopy and X-ray diffraction analyses were carried out to characterize samples. Results showed that larger than 1. mm particle size of... 

    A comprehensive review on ultrasonic spray pyrolysis technique: Mechanism, main parameters and applications in condensed matter

    , Article Journal of Analytical and Applied Pyrolysis ; Volume 141 , 2019 ; 01652370 (ISSN) Rahemi Ardekani, S ; Sabour Rouh Aghdam, A ; Nazari, M ; Bayat, A ; Yazdani, E ; Saievar Iranizad, E ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    Nanostructured materials have attracted much attention in recent decades. Nowadays, there are numerous nanomaterials with several applications. The ultrasonic spray pyrolysis method is a cost-effective and adaptable technique based on an aerosol process for synthesizing nanoparticles and depositing thin films. The technique is capable of synthesizing metal, oxide, and composite nanomaterials with precisely controllable morphologies and chemical compositions using metal salts in aqueous solvents. More importantly, it is popular, as evident from the growing number of studies being conducted on the technique. Here, we review studies conducted on basic principles and applications of the... 

    Multiscale Modelling the Nonlinear Behavior of Metallic Nano-powder Compaction Process

    , M.Sc. Thesis Sharif University of Technology Mofatteh, Hossein (Author) ; Khoie, Amir Reza (Supervisor)
    Abstract
    In present research forming process of nanopowders, which is a part of powder metallurgy was investigated by molecular dynamics method. Powder metallurgy is a relatively new method for production of industrial parts by pouring powder into die and compaction to desired density. One can reach parts with higher quality and strength by decreasing size of powder’s particles and entering the nano scale. Particle with smaller size have higher specific surface and due more intensity to react. Classic methods for investigation of this process don’t cover the atomic scale effects, so using newer procedures such as molecular dynamics is highly recommended. In present research, at first compaction of... 

    Effect of sintering temperature and siliconcarbide fraction on density, mechanical properties and fracture mode of alumina-silicon carbide micro/nanocomposites

    , Article Materials and Design ; Volume 37 , May , 2012 , Pages 251-255 ; 02641275 (ISSN) Rahimnejad Yazdi, A ; Baharvandi, H ; Abdizadeh, H ; Purasad, J ; Fathi, A ; Ahmadi, H ; Sharif University of Technology
    2012
    Abstract
    In this study Al2O3-SiC micro/nanocomposites have been fabricated by mixing alumina nanopowders and silicon carbide micro/nanopowders, followed by hot pressing at 1550, 1600, 1650 and 1700°C. The density, mechanical properties and fracture mode of Al2O3-SiC composites containing different volume fractions (2.5%, 5%, 7.5%, 10% and 15%) of micro/nanoscale SiC particles were investigated and compared with those of alumina. The relative density of composites could reach values very close to theoretical density, especially after sintering at 1700°C. However, relative density declined by increasing the SiC fraction at the same sintering temperature. The flexural strength of composites was best for... 

    Influence of autogenous seeding on densification and microstructure in processing of γ-alumina nanopowders

    , Article Phase Transitions ; Volume 84, Issue 1 , 2011 , Pages 1-14 ; 01411594 (ISSN) Khodabakhshi, F ; Maleksaeedi, S ; Paydar, M. H ; Saadat, S ; Sharif University of Technology
    2011
    Abstract
    The effect of α-Al 2O 3 seeds and MgO on the densification behavior and microstructure of the nanocrystalline γ-Al 2O 3 powder was investigated. The required α-Al 2O 3 seeds were produced by 'autogenous seeding' where the seeds were obtained by calcination of the initial nanosized γ-Al 2O 3 powders above its transformation temperature and incorporated into γ-Al 2O 3 matrix. The seeds were characterized by means of laser particle size analyzer, X-ray diffraction, and Brunauer-Emmett-Teller surface analyzer. The simultaneous influence of α-Al 2O 3 seeds and MgO on γ-Al 2O 3 behavior was evaluated by differential thermal analysis, densitometry, and electron microscopy. The results showed that... 

    W-15 wt%Cu nano-composite produced by hydrogen-reduction/sintering of WO3-CuO nano-powder

    , Article International Journal of Refractory Metals and Hard Materials ; Volume 28, Issue 3 , 2010 , Pages 441-445 ; 02634368 (ISSN) Ahmadi, E ; Malekzadeh, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    A two-stage hydrogen-reduction/sintering procedure was used to synthesize W-15 wt%Cu nano-composite tablets. Hydrogen-reduction was carried out at 600, 650, 700 and 750 °C for 15-90 min and sintering was performed at 1100, 1150, 1200 and 1250 °C for 60 min. Morphology and grain size of the products were rigorously investigated by scanning electron microscope (SEM), X-ray diffractometer (XRD) and nano-particle Zeta-sizer. Maximum consolidation of the nano-composite product was achieved at 1200 °C. Hydrogen-reduction at 700 °C for 90 min showed an average particle size of ∼72.9 nm. Total reduction was achieved at higher temperatures and longer times. The mixture had a homogeneous structure... 

    Enhanced microwave absorption performance of BiFeO3 nanopowders coated with Polyindole-PANI co-polymer in ku band frequency

    , Article Journal of Magnetism and Magnetic Materials ; Volume 560 , 2022 ; 03048853 (ISSN) Alamri, S ; Alnujaie, A ; Tan Hoi, H ; Tra Giang, H ; Niaz Akhtar, M ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    It's still a significant difficulty to find microwave absorbers that have outstanding microwave dissipation performance in hostile environments. Herein, the core–shell structure of polyindole-PANI co-polymer@BiFeO3 nanocomposite is successfully prepared via in-situ polymerization method. The introduction of a co-polymer shell on the surface of magnetic BiFeO3 nanoparticles considerably tuned the attenuation constant and impedance matching characteristics. The electromagnetic characteristics and microwave absorption feature of the polyindole-PANI co-polymer@BiFeO3 nanocomposites may be found to be influenced by filler loading content regulation. The sample containing 40 wt% of polyindole-PANI... 

    Sol-gel synthesis of Mn1.5Co1.5O4 spinel nano powders for coating applications

    , Article Materials Research Bulletin ; Volume 102 , 2018 , Pages 180-185 ; 00255408 (ISSN) Hashemi, S. T ; Dayaghi, A. M ; Askari, M ; Gannon, P. E ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    Mn1.5Co1.5O4 oxide spinels are widely used as protective coatings for stainless steel interconnects within planar solid oxide fuel cell stacks. Containing both cubic and tetragonal crystalline phases, these Mn/Co oxide spinels exhibit favorable thermal stability and electronic conductivity for the SOFC interconnect application. Slurry-based coating applications of Mn/Co oxides require precursor powders, which can benefit from being nano-structured. In this study, the sol-gel synthesis of nanocrystalline Mn1.5Co1.5O4 spinel is investigated. The decomposition of sol-gel precursors, as well as the crystalline phase structures and microstructures of the product Mn1.5Co1.5O4 are characterized by... 

    Effect of hydrogen reduction on microstructure and magnetic properties of mechanochemically synthesized Fe-16.5Ni-16.5Co nano-powder

    , Article Journal of Magnetism and Magnetic Materials ; Volume 321, Issue 18 , 2009 , Pages 2729-2732 ; 03048853 (ISSN) Azizi, A ; Yoozbashizadeh, H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2009
    Abstract
    Most recent findings on structural and magnetic properties of Fe-Ni-Co nano-powders produced by mechanical alloying and subsequent low-temperature hydrogen reduction are presented in this paper. At 300 rpm, with ball to powder weight ratio of 20, single phase nickel-cobalt ferrite is mechanically synthesized for 50 h. The as-milled powder is then subjected to 1 h hydrogen reduction at 700 °C. Hydrogen reduction results in the formation of Fe-16.5%Ni-16.5%Co nano-powders. The phases of the powders are identified by X-ray diffraction (XRD) utilizing Cu Kα radiation. Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) are used to study the morphology and the average... 

    Room temperature synthesis of highly crystalline TiO2 nanoparticles

    , Article Materials Letters ; Volume 92 , February , 2013 , Pages 287-290 ; 0167577X (ISSN) Sasani Ghamsari, M ; Radiman, S ; Azmi Abdul Hamid, M ; Mahshid, S ; Rahmani, S ; Sharif University of Technology
    2013
    Abstract
    Hydrolysis of titanium isopropoxide alcoholic solution has been used to prepare the crystallized TiO2 nanoparticles at low temperature. Concentration ratio was used to control the pathway of sol-gel process and change the physical characteristics of TiO2 nanopowders. The crystallinity, morphology and size of aged TiO2 nanopowders were studied by X-ray diffraction and Scanning Electron Microscopy (SEM). FTIR and, Thermo-Gravimetric (TG) analysis were used to identify the functional groups and thermal behavior of prepared samples. Experimental results have shown that high crystalline TiO2 nanomaterial with anatase polymorph can be obtained at room temperature. It has been found that the... 

    Controlled microwave-assisted synthesis of ZnFe 2 O 4 nanoparticles and their catalytic activity for O-acylation of alcohol and phenol in acetic anhydride

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1597-1600 ; 10263098 (ISSN) Matloubi Moghaddam, F ; Doulabi, M ; Saeidian, H ; Sharif University of Technology
    2012
    Abstract
    ZnFe2O4 nanoparticles have been successfully prepared through a controlled microwave-assisted co-precipitation. X-ray Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Scanning Electron Microscopy (SEM) and Vibrating Sample Magnetometer (VSM) were used for the structural, morphological and magnetic investigation of the product. SEM micrographs of ZnFe2O4 nanopowder also reveal that nanoparticles have spherical shape. Average particle size was obtained as 12 nm from XRD. Catalytic activity of ZnFe2O4 nanopowder for O-acylation of alcohol and phenol has been investigated. A trace amount of ZnFe2O4 has been effectively used as a nanocatalyst for the acylation of alcohol and... 

    Magnesium nanopowder for hydrogen absorption and ammonium perchlorate decomposition

    , Article Materials Letters ; Volume 85 , 2012 , Pages 128-131 ; 0167577X (ISSN) Fahimpour, V ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    Magnesium nanopowder (MgNP) of 17 nm average size was produced by planetary ball milling of Mg (φ=229 μm) with 10 wt% NaCl (φ=406 μm) for 50 h. NaCl was omissible by dissolution in saturated KOH. Partial oxidation of MgNP occurred, however, in presence of KOH. MgNP-NaCl mixture was, therefore, used for transmission electron microscopy (TEM), scanning electron microscopy (SEM), x-ray diffraction (XRD), differential scanning calorimetry (DSC) and Sieverts equilibrium investigation. DSC analysis of ammonium perchlorate showed one endothermic and three exothermic reactions. MgNP did not noticeably affect on the initial endothermic reaction. But it decreased transformation temperatures of the... 

    Effect of high energy ball milling on compressibility and sintering behavior of alumina nanoparticles

    , Article Ceramics International ; Volume 38, Issue 4 , May , 2012 , Pages 2627-2632 ; 02728842 (ISSN) Eskandari, A ; Aminzare, M ; Razavi Hesabi, Z ; Aboutalebi, S. H ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The effect of high-energy ball milling on the textural evolution of alumina nanopowders (compaction response, sinter-ability, grain growth and the degree of agglomeration) during post sintering process is studied. The applied pressure required for the breakage of the agglomerates (P y) during milling was estimated and the key elements of compressibility (i.e. critical pressure (P cr) and compressibility (b)) were calculated. Based on the results, the fracture point of the agglomerates decreased from 150 to 75 MPa with prolonged milling time from 3 to 60 min. Furthermore, the powders were formed by different shaping methods such as cold isostatic press (CIP) and uniaxial press (UP) to better... 

    Synthesis and characterization of sol-gel derived hydroxyapatite-bioglass composite nanopowders for biomedical applications

    , Article Journal of Biomimetics, Biomaterials, and Tissue Engineering ; Volume 12, Issue 1 , 2012 , Pages 51-57 ; 16621018 (ISSN) Adibnia, S ; Nemati, A ; Fathi, M. H ; Baghshahi, S ; Sharif University of Technology
    2012
    Abstract
    The main purpose of this study is to prepare and characterize hydroxyapatite (HA)-10%wt bioglass (BG) composite nanopowders and its bioactivity. Composites of hydroxyapatite with synthesized bioglass are prepared at various temperatures. Suitable calcination temperature is chosen by evaluating of the phase composition. X-ray diffraction (XRD), Transmission electron microscopy (TEM) and Scanning electron microscopy (SEM) techniques are utilized to characterize the prepared nanopowders. The bioactivity of the prepared composite samples is evaluated in an in vitro study by immersion of samples in simulated body fluid (SBF) for predicted time. Fourier transformed infrared (FTIR) spectroscopy and... 

    Gel-sol synthesis and aging effect on highly crystalline anatase nanopowder

    , Article Bulletin of Materials Science ; Volume 34, Issue 6 , October , 2011 , Pages 1189-1195 ; 02504707 (ISSN) Shahini, S ; Askari, M ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    Highly crystalline TiO 2 anatase nanoparticles were synthesized via gel-sol method by using titanium isopropoxide and triethanolamine. The products were characterized by X-ray diffraction, transmission electron microscopy, thermogravimetric/differential thermal analysis and nitrogen gas absorption methods. The particle size ranged from 7 to 24 nm having specific surface area of 64 to 220 m 2/g. Selective Ti(OH) 4 gel specifications and hydrothermal test conditions resulted in thermodynamically- stable phase-formation. Aging at 130°C for 4 h resulted in particle size of 7 nm; while at 130 and 160°C for 12 h resulted in 12 and 21 nm, respectively  

    Sintering of Al2O3-SiC composite from sol-gel method with MgO, TiO2 and Y2O3 addition

    , Article Ceramics International ; Volume 37, Issue 5 , 2011 , Pages 1681-1688 ; 02728842 (ISSN) Mohammad Rahimi, R ; Rezaie, H. R ; Nemati, A ; Sharif University of Technology
    2011
    Abstract
    Al2O3-SiC composite ceramics were prepared by pressureless sintering with and without the addition of MgO, TiO2 and Y2O3 as sintering aids. The effects of these compositional variables on final density and hardness were investigated. In the present article at first α-Al2O3 and β-SiC nano powders have been synthesized by sol-gel method separately by using AlCl 3, TEOS and saccharose as precursors. Pressureless sintering was carried out in nitrogen atmosphere at 1600 °C and 1630 °C. The addition of 5 vol.% SiC to Al2O3 hindered densification. In contrast, the addition of nano MgO and nano TiO2 to Al 2O3-5 vol.% SiC composites improved densification but Y2O3 did not have positive effect on... 

    Hydrothermal synthesis and characterization of TiO 2 nanostructures using LiOH as a solvent

    , Article Advanced Powder Technology ; Volume 22, Issue 3 , 2011 , Pages 336-339 ; 09218831 (ISSN) Zanganeh, S ; Kajbafvala, A ; Zanganeh, N ; Molaei, R ; Bayati, M. R ; Zargar, H. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    2011
    Abstract
    In the present study, we performed hydrothermal method as a simple and efficient route for the synthesis of rutile TiO 2 nanostructures in various concentrations of lithium hydroxide solutions. TiO 2 nanopowders with average sizes of 15 and 23 nm were prepared using 4 M and 7 M LiOH solutions. X-ray diffraction analysis (XRD), transmission electron microscope (FEG-STEM), scanning electron microscopy (SEM), and Brunauer-Emmet-Teller (BET) analyses were used in order to characterize the obtained products and comparison of the morphology of the powders obtained in different concentrations of LiOH solvent. It was shown that alkali solution concentration has affected the crystallinity,... 

    Study on the phase transformation kinetics of sol-gel drived TiO 2 nanoparticles

    , Article Journal of Nanomaterials ; Volume 2010 , August , 2010 ; 16874110 (ISSN) Askari, M ; Mehranpour, H ; Sasani Ghamsari, M ; Farzalibeik, H ; Sharif University of Technology
    2010
    Abstract
    Titanium dioxide nanopowders were synthesized by the diffusion controlled sol-gel process (LaMer model) and characterized by DTA-TG, XRD, and SEM. The prepared TiO 2 nanoparticles have uniform size and morphology, and the phase transformation kinetics of obtained material was studied by interpretation of the X-ray diffraction patterns peaks on the base of Avrami equation. The stating point of anatase-rutile phase transformation temperature in the prepared nanoparticles was found between 100 and 200 C. A decreasing trend on the intensity of X-ray peaks of anatase phase was observed up to 600 C when the presence of the rutile phase became predominant. Results indicated that the transition...