Search for: nanocarrier
0.006 seconds
Total 52 records

    Mesoporous silica nanoparticles (MCM-41) coated PEGylated chitosan as a pH-Responsive nanocarrier for triggered release of erythromycin [electronic resource]

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; 2014, Volume 63, Issue 13, Pages 692-697 Pourjavadi, A. (Ali) ; Mazaheri Tehrani, Zahra ; Sharif University of Technology
    A pH-responsive drug delivery system based on core shell structure of mesoporous silica nanoparticle (MSN) and chitosan-PEG copolymer was prepared and characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA), scanning electron microscope (SEM), and high-resolution transmission microscope (HR-TEM) techniques. In order to improve compatibility MSN and drug, mesoporous nanosilica was modified by 3-aminopropyl triethoxysilane. The release of erythromycin (a macrolide antibiotic) as a model drug was investigated in two pHs, 7.4 and 5.5  

    Polyethylene glycol-coated porous magnetic nanoparticles for targeted delivery of chemotherapeutics under magnetic hyperthermia condition

    , Article International Journal of Hyperthermia ; 2018 ; 02656736 (ISSN) Dabbagh, A ; Hedayatnasab, Z ; Karimian, H ; Sarraf, M ; Yeong, C. H ; Madaah Hosseini, H. R ; Abu Kasim, N. H ; Wong, T. W ; Rahman, N. A ; Sharif University of Technology
    Taylor and Francis Ltd  2018
    Purpose: Although magnetite nanoparticles (MNPs) are promising agents for hyperthermia therapy, insufficient drug encapsulation efficacies inhibit their application as nanocarriers in the targeted drug delivery systems. In this study, porous magnetite nanoparticles (PMNPs) were synthesized and coated with a thermosensitive polymeric shell to obtain a synergistic effect of hyperthermia and chemotherapy. Materials and methods: PMNPs were produced using cetyltrimethyl ammonium bromide template and then coated by a polyethylene glycol layer with molecular weight of 1500 Da (PEG1500) and phase transition temperature of 48 ± 2 °C to endow a thermosensitive behavior. The profile of drug release... 

    Albumin-graphene oxide conjugates; Carriers for anticancer drugs

    , Article RSC Advances ; Vol. 4, issue. 62 , July , 2014 , pp. 33001-33006 ; ISSN: 20462069 Jokar, S ; Pourjavadi, A ; Adeli, M ; Sharif University of Technology
    In order to improve its biological properties, graphene oxide can be modified with hydrophilic polymers. Therefore, in this study, the surface of graphene oxide was modified with polyethylene glycol and albumin by covalent methods. In the subsequent step, paclitaxel which is a hydrophobic anticancer drug was loaded onto the surface of the functionalized graphene by π-π interactions. The synthesis of the nanocarrier and its interaction with paclitaxel were evaluated by FT-IR, CD, TEM, UV, AFM, DLS and fluorescence experiments. Release of the loaded drug from albumin-graphene conjugate was investigated at pH 5.4, 6.8 and 7.4  

    Design of Oxidative Stress Nanoparticles for Targeted drug Delivery to the Posterior Segment of the Eye and Breast Cancer

    , Ph.D. Dissertation Sharif University of Technology Behroozi, Farnaz (Author) ; Abdekhodaei, Mohammad Jafar (Supervisor) ; Baharvand, Hossein (Supervisor) ; Satarian, Leila ($item.subfieldsMap.e) ; Sadeghi, Hamid ($item.subfieldsMap.e)
    The oxidation-reduction (redox) responsive micelle system is based on a diselenide-containing triblock copolymer, poly(ε-caprolactone)-bis(diselenide-methoxy poly(ethylene glycol)/poly(ethylene glycol)-folate) [PCL-(SeSe-mPEG/PEG-FA)2]. Resulting in the development of tumor-targeted delivery for hydrophobic anticancer drugs. The diselenide bond, as redox-sensitive linkage, was designed, so it is located at the hydrophilic/hydrophobic hinge to allow complete micelles collapse and efficient drug release, in redox environments. The amphiphilic block copolymers self-assembled into micelles at concentrations above the critical micelle concentration (CMC) in an aqueous environment. Dynamic light... 

    PEG-co-polyvinyl pyridine coated magnetic mesoporous silica nanoparticles for pH-responsive controlled release of doxorubicin

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Volume 64, Issue 11 , 2015 , Pages 570-577 ; 00914037 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Bennett, C ; Sharif University of Technology
    Taylor and Francis Inc  2015
    In the present work a pH responsive drug nanocarrier based on magnetic mesoporous silica nanoparticles (MMSN) and polyethylene glycol-co-polyvinyl pyridine (PEG-co-PVP) was prepared. The core-shell nanocarrier was formed due to electrostatic interaction between protonated polyvinyl pyridine and surface modified MMSN with carboxylate groups. This carrier was used for pH-controllable doxorubicin release. The maximum release was occurred at pH 5.5 (pH of endosomes). This carrier was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, UV-Vis spectrophotometer, scanning electron microscope, and high-resolution transmission electron microscope techniques. Also the... 

    Surfactant effects on the particle size, zeta potential, and stability of starch nanoparticles and their use in a pH-responsive manner

    , Article Cellulose ; Volume 24, Issue 10 , 2017 , Pages 4217-4234 ; 09690239 (ISSN) Masoudipour, E ; Kashanian, S ; Hemati Azandaryani, A ; Omidfar, K ; Bazyar, E ; Sharif University of Technology
    Storage conditions seem to be important in the long-term stability of nanoparticles (NPs). This work studies the effects of surfactants and storage container on particle size distribution and zeta potential during long-term storage of acid hydrolyzed potato starch NPs. The NPs were prepared from potato starch using acid hydrolysis and high-intensity ultrasonication. During the ultrasonic treatment, the surfactants were added dropwise to the solutions to reduce the size and stabilize the formed NPs. Particle size distribution, zeta potential, and FE-SEM were used to characterize the ensuing NPs. Additionally, a 5-month stability study was performed to evaluate the maintenance of potato starch... 

    Magnetic pH-responsive nanocarrier with long spacer length and high colloidal stability for controlled delivery of doxorubicin

    , Article Colloids and Surfaces B: Biointerfaces ; Vol. 116 , April , 2014 , pp. 49-54 ; ISSN: 09277765 Pourjavadi, A ; Hosseini, S. H ; Alizadeh, M ; Bennett, C ; Sharif University of Technology
    A novel magnetic nanocarrier with long spacer length and high colloidal stability has been prepared for effective delivery of doxorubicin (DOX). First, poly(amidoamine) (PAMAM) dendrimer was grown up onto the surface of superparamagnetic iron oxide nanoparticles to increase the loading amount of amine groups. Then, terminal amine groups were functionalized by polyethylene glycol dimethylester to increase the spacer length. Then anticancer drug DOX was covalently attached onto the system by hydrazone bond to forms a pH-sensitive nanocarrier. This system is designed to combine the advantage of magnetic targeting, high drug loading capacity, and controlled release  

    Synthesis and Characterization of Transition Metal Complexes Supported on Carbon-Based Nanocomposites and Their Application as Gene and Drug Delivery Systems

    , Ph.D. Dissertation Sharif University of Technology Safarkhani, Moein (Author) ; Bagherzadeh, Mojtaba (Supervisor)
    In this dissertation, an attempt has been made to optimize some smart nanocarriers and the controllable release of drug (doxorubicin) and genetic material (plasmid CRISPR). Regarding, some metal nanoparticles, metal-organic frameworks, transition metal complexes, graphene oxide, and functionalized carbon nanotubes have been synthesized and also characterized and their hybrids and nanocomposites have been prepared successfully. All the abovementioned nanomaterials were designed and synthesized due to achieve biodegradable, biocompatible, higher positive surface potential, lower cytotoxicity, better responsivity to stimulus, and greener compounds. Doxorubicin and plasmid CRISPR has been... 

    Loading of Drug and Nanostructured Coating on Dental Implant

    , M.Sc. Thesis Sharif University of Technology Abbaspour Ghomi, Somayya (Author) ; Sadrnezhaad, Khatiboleslam (Supervisor)
    The aim of this project is to load analgesic drug; Paracetamol on dental implant. The implant is titanium alloy (Ti-6Al-4V). There are two kinds of samples of anodized and HA coated onto anodized. They are in the shape of the sheets in this study. The electrodeposition and anodization carried out in order to treat the two samples. Nanotubes were formed during anodic oxidation of the samples in the 1M Ammonium sulfate (NH₄)₂SO4 and 5wt% Ammonium fluoride NH4F electrolyte. They are expected to play role of carrier for the model drug; paracetamol. The results showed that HA anodized Ti-6-4 has the ability to hold higher amounts of drug and also can keep the drug for a longer time than the... 

    Investigating the Effect of Geometric Shape and Properties of Protein Corona on Drug Release Using Finite Element Method

    , M.Sc. Thesis Sharif University of Technology Mohammadi Hosseinabadi, Hossein (Author) ; Naghdabadi, Reza (Supervisor)
    In novel drug delivery systems, once nanocarriers confront the biological milieu, their surface is rapidly covered with a layer of biomolecules (i.e., “protein corona”) which play an important role in their drug release rate. Various experimental studies have been done to elucidate the effect of nanoparticles properties on the drug release rate in different biological applications. The physical and geometrical properties of protein corona totally influence on the release profile. In this study, we proposed a suitable finite element model which contains the nanoparticles and the protein layer with their properties in the biological milieu. To this end, diffusion parameters including diffusion... 

    Design and Fabrication of Drug-loaded Nanoparticles to Prevent Fibrillation of Alpha-synuclein in Parkinson

    , M.Sc. Thesis Sharif University of Technology Nayebzadeh, Ramin (Author) ; Mashayekhan, Shohreh (Supervisor) ; Morshedi, Dina (Supervisor)
    The purpose of this study is to assess the inhibitory effects of an appropriate nanoparticles loaded with gallic acid on the fibrillation of alpha-synuclein. Alpha-synuclein is a major component of protein plaques in synucleinopathies, particularly Parkinson’s disease. Gallic acid (GA, 3,4,5-trihydroxy benzoic acid) is a well–known small molecule which can inhibit the formation of α-synuclein fibrils. For the process of fibrillation, purified protein was incubated at 37◦C and pH 7.2. Fibrillation was analyzed by the standard fibril methods.after that investigated fabricating of gallic acid trapped in the chitosan nanoparticles and gallic acid loaded in chitosan –coated mesoporous silica... 

    Temperature-responsive smart nanocarriers for delivery of therapeutic agents: applications and recent advances

    , Article ACS Applied Materials and Interfaces ; Volume 8, Issue 33 , 2016 , Pages 21107-21133 ; 19448244 (ISSN) Karimi, M ; Sahandi Zangabad, P ; Ghasemi, A ; Amiri, M ; Bahrami, M ; Malekzad, H ; Ghahramanzadeh Asl, H ; Mahdieh, Z ; Bozorgomid, M ; Ghasemi, A ; Rahmani Taji Boyuk, M. R ; Hamblin, M. R ; Sharif University of Technology
    American Chemical Society  2016
    Smart drug delivery systems (DDSs) have attracted the attention of many scientists, as carriers that can be stimulated by changes in environmental parameters such as temperature, pH, light, electromagnetic fields, mechanical forces, etc. These smart nanocarriers can release their cargo on demand when their target is reached and the stimulus is applied. Using the techniques of nanotechnology, these nanocarriers can be tailored to be target-specific, and exhibit delayed or controlled release of drugs. Temperature-responsive nanocarriers are one of most important groups of smart nanoparticles (NPs) that have been investigated during the past decades. Temperature can either act as an external... 

    Hydrazine-modified starch coated magnetic nanoparticles as an effective pH-responsive nanocarrier for doxorubicin delivery

    , Article Journal of Industrial and Engineering Chemistry ; Volume 39 , 2016 , Pages 203-209 ; 1226086X (ISSN) Zohreh, N ; Hosseini, S. H ; Pourjavadi, A ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2016
    A novel, magnetic nanocarrier was successfully synthesized through a facile and economical producer in which Fe3O4 magnetic nanoparticles were coated by starch-g-poly (methyl methacrylate-co-PEG-acrylamide). The surface of nanocarrier was then modified by hydrazine to preparation of a pH-responsive carrier. The resulted nanocarrier was applied for delivery of doxorubicin (DOX) as an effective anti-cancer drug. DOX was reacted with hydrazine linkage on the surface of nanocarrier to form hydrazone bond. Due to the presence of numerous hydrazine groups on the surface of magnetic nanocarrier large amounts of DOX was loaded onto the carrier (327 mg g−1). © 2016 The Korean Society of Industrial... 

    Design of Drug Nanocarriers Based on Mesoporous Silica Nanoparticles Coated with Smart Polymers

    , Ph.D. Dissertation Sharif University of Technology Mazaheri Tehrani, Zahra (Author) ; Pourjavadi, Ali (Supervisor)
    Mesoporous silica nanoparticles have broad application in drud delivery systems due to their porous structure, functionalization, biocompatibility, high surface area and pore volume. Neverthless, pure mesoporous silica nanoparticles without functionality were not smart material and could not release drug in triggered and controlled manner. For this reason, using smart polymeric coating would be considered. Polymer shells also provide colloidal stability, improved blood circulation lifetime and reduced toxicity which are crucial for efficient in vivo drug delivery. Inflammatory and tumor tissue have low pH and high temperature as compared to health tissue. Therefore, using pH and... 

    Synthesis of Magnetic Fe3o4 Nanoparticle and Coating It with Modified Starch for Targeted Delivery of Doxorubicin Anticancer Drug

    , M.Sc. Thesis Sharif University of Technology Alizadeh, Mahshid (Author) ; Pourjavadi, Ali (Supervisor)
    One of the major problems in cancer treatment is side effects of treatments. Today, scientists have developed smart nanocarrier for diagnosis and drug delivery that can circulate in the bloodstream, pass the body's immune system to kill cancer cells and attach to the cancer cells to deliver drugs, without the side effects that are in other treatments, such as chemotherapy. magnetic nanoparticles coated by biodegradable polymers are one of the smart polymers. In this study, iron oxide nanoparticles with amine group on their surface are coated by starch modified by methyl acrylate then reacted with hydrazine and hydrazide functional group is formed that can chemically be bonded with the... 

    Loading of Doxorubicin on Stimuli-Responsive Nanocarriers and Investigation of its Release

    , M.Sc. Thesis Sharif University of Technology Yaghoubi, Mahshid (Author) ; Pourjavadi, Ali (Supervisor)
    Drug targeting to specific organs and tissues has become one of the critical endeavors of the new century. Magnetic nanoparticles have gained a lot of attention in biomedical and industrial application. Doxorubicin is an effective anti-cancer drug in the treatment of many types of cancers. The aim of this study is to load doxorubicin on stimuli-responsive nanocarriers. These nanocarriers are prepared from magnetic nanoparticles. Then these magnetic nanparticles are coated by copolymer of poly(glycidyl methacrylate) then reacted with hydrazine and hydrazide functional group is formed that can chemically be bonded with the anticancer drug doxorubicin via a hydrazone bond formation. This... 

    Dendritic magnetite decorated by pH-responsive PEGylated starch: A smart multifunctional nanocarrier for the triggered release of anti-cancer drugs

    , Article RSC Advances ; Volume 5, Issue 60 , Jun , 2015 , Pages 48586-48595 ; 20462069 (ISSN) Pourjavadi, A ; Mazaheri Tehrani, Z ; Hosseini, S. H ; Sharif University of Technology
    Royal Society of Chemistry  2015
    In the present study, we designed a pH-responsive drug nanocarrier based on polyamidoamine-modified Fe3O4 nanoparticles coated by PEGylated starch-co-poly(acrylic acid). This carrier was used for the controlled release of doxorubicin as an anticancer drug model. The purpose of using the polyethylene glycol moiety is to generate a biostable nanocarrier in blood stream as it has been reported widely in the pharmaceutical literature. The use of a poly(acrylic acid) segment also provided pH-sensitivity to the polymer. Besides, the magnetic nanoparticles facilitate the cancer cell targeting with an external magnetic field located near the tumor site. This carrier was... 

    Folate-receptor-targeted delivery of doxorubicin using polyethylene glycol-functionalized gold nanoparticles

    , Article Industrial and Engineering Chemistry Research ; Volume 49, Issue 4 , 2010 , Pages 1958-1963 ; 08885885 (ISSN) Asadishad, B ; Vossoughi, M ; Alemzadeh, I ; Sharif University of Technology
    Doxorubicin-loaded nanocarriers were produced employing folate-modified polyethylene glycol (PEG)-functionalized gold nanoparticles for targeted delivery to positive folate-receptor cancer cells. Doxorubicin and folate were, respectively, conjugated to activated-folate and activated-PEG. The conjugates formed doxorubicin nanocarrier with an average size of 12 nm in diameter. The drug release response of functionalized gold nanoparticles was characterized by an initial rapid drug release followed by a controlled release. The doxorubicin nanocarriers showed higher cytotoxic effect on folate-receptor-positive cells (KB cells) than folatereceptor-negative cells (A549 cells). Cell viability in... 

    Smart mesoporous silica nanoparticles for controlled-release drug delivery

    , Article Nanotechnology Reviews ; Volume 5, Issue 2 , 2016 , Pages 195-207 ; 21919089 (ISSN) Karimi, M ; Mirshekari, H ; Aliakbari, M ; Sahandi Zangabad, P ; Hamblin, M. R ; Sharif University of Technology
    Walter de Gruyter GmbH  2016
    Stimuli-responsive controlled-release nanocarriers are promising vehicles for delivery of bioactive molecules that can minimize side effects and maximize efficiency. The release of the drug occurs when the nanocarrier is triggered by an internal or external stimulus. Mesoporous silica nanoparticles (MSN) can have drugs and bioactive cargos loaded into the high-capacity pores, and their release can be triggered by activation of a variety of stimulus-responsive molecular "gatekeepers" or "nanovalves." In this mini-review, we discuss the basic concepts of MSN in targeted drug-release systems and cover different stimulus-responsive gatekeepers. Internal stimuli include redox, enzymes, and pH,... 

    Stimulus-responsive liposomes as smart nanoplatforms for drug delivery applications

    , Article Nanotechnology Reviews ; 2017 ; 21919089 (ISSN) Sahandi Zangabad, P ; Mirkiani, S ; Shahsavari, S ; Masoudi, B ; Masroor, M ; Hamed, H ; Jafari, Z ; Davatgaran Taghipour, Y ; Hashemi, H ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Liposomes are known to be promising nanoparticles (NPs) for drug delivery applications. Among different types of self-assembled NPs, liposomes stand out for their non-toxic nature, and their possession of dual hydrophilic-hydrophobic domains. Advantages of liposomes include the ability to solubilize hydrophobic drugs, the ability to incorporate different hydrophilic and lipophilic drugs at the same time, lessening the exposure of host organs to potentially toxic drugs and allowing modification of the surface by a variety of different chemical groups. This modification of the surface, or of the individual constituents, may be used to achieve two important goals. Firstly, ligands for active...