Loading...
Search for: nanocrystal
0.006 seconds
Total 153 records

    Cu2O nanocrystals with various morphology: Synthesis, characterization and catalytic properties

    , Article Chinese Chemical Letters ; 2017 ; 10018417 (ISSN) Bagherzadeh, M ; Mousavi, N. A ; Amini, M ; Gautam, S ; Singh, J. P ; Chae, K. H ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Cu2O nanocubes, octahedra, spheres and truncated rhombic dodecahedral were prepared and their structural, morphological, and electronic properties were investigated by X-ray diffraction analysis, X-ray absorption near edge structure, scanning electron microscope and transmission electron microscope and X-ray absorption near edge structure. Cu2O nanocrystals were successfully employed to catalyze the 1,3-dipolar cycloaddition reaction for the synthesis of 1,4-disubstituted triazoles. Cu2O nanocubes and octahedral showed the superior catalytic performance in the cycloaddition reaction. These results reveal that crystal-plane engineering of oxide catalysts is a useful strategy for developing... 

    Cu2O nanocrystals with various morphology: synthesis, characterization and catalytic properties

    , Article Chinese Chemical Letters ; Volume 28, Issue 5 , 2017 , Pages 1125-1130 ; 10018417 (ISSN) Bagherzadeh, M ; Mousavi, N. A ; Amini, M ; Gautam, S ; Singh, J. P ; Chae, K. H ; Sharif University of Technology
    Elsevier B.V  2017
    Abstract
    Cu2O nanocubes, octahedra, spheres and truncated rhombic dodecahedral were prepared and their structural, morphological, and electronic properties were investigated by X-ray diffraction analysis, X-ray absorption near edge structure, scanning electron microscope and transmission electron microscope and X-ray absorption near edge structure. Cu2O nanocrystals were successfully employed to catalyze the 1,3-dipolar cycloaddition reaction for the synthesis of 1,4-disubstituted triazoles. Cu2O nanocubes and octahedral showed the superior catalytic performance in the cycloaddition reaction. These results reveal that crystal-plane engineering of oxide catalysts is a useful strategy for developing... 

    Facile synthesis of gradient alloyed ZnxCd1- xS nanocrystals using a microwave-assisted method

    , Article Journal of Alloys and Compounds ; Volume 586 , 2014 , Pages 380-384 Alehdaghi, H ; Marandi, M ; Molaei, M ; Iraji-zad, A ; Taghavinia, N ; Sharif University of Technology
    Abstract
    We have synthesized ZnxCd1-xS nanocrystals (NCs) using a microwave assisted method. Zn(Ac)2, CdSO4 and Na2S2O3 were used as the precursors and thioglycerol (TG) was used as the capping agent. Na2S 2O3 is a photo and heat sensitive material, which supplies S species needed for the reaction upon dissociation. In this facile method, microwave irradiation provides the activation energy for the dissociation of Na2S2O3 in and leads to the formation of ZnxCd1-xS NCs in 2 min. The question that to what extent Zn is incorporated into CdS structure was addressed using UV-Vis spectroscopy, X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). Our results showed that the real value of x in... 

    High-efficiency CdTe/CdS core/shell nanocrystals in water enabled by photo-induced colloidal hetero-epitaxy of CdS shelling at room temperature

    , Article Nano Research ; Volume 8, Issue 7 , July , 2015 , Pages 2317-2328 ; 19980124 (ISSN) Zare, H ; Marandi, M ; Fardindoost, S ; Sharma, V. K ; Yeltik, A ; Akhavan, O ; Demir, H. V ; Taghavinia, N ; Sharif University of Technology
    Tsinghua University Press  2015
    Abstract
    We report high-efficiency CdTe/CdS core/shell nanocrystals synthesized in water by epitaxially growing CdS shells on aqueous CdTe cores at room temperature, enabled by the controlled release of S species under low-intensity ultraviolet (UV) light illumination. The resulting photo-induced dissociation of S2O32− ions conveniently triggers the formation of critical two-dimensional CdS epitaxy on the CdTe surface at room temperature, as opposed to initiating the growth of individual CdS core-only nanocrystals. This controlled colloidal hetero-epitaxy leads to a substantial increase in the photoluminescence (PL) quantum yield (QY) of the shelled nanocrystals in water... 

    Shape-Controlled photochemical synthesis of noble metal nanocrystals based on reduced graphene oxide

    , Article ACS Applied Materials and Interfaces ; Volume 14, Issue 14 , 2022 , Pages 16527-16537 ; 19448244 (ISSN) Liu, Y ; Naseri, A ; Li, T ; Ostovan, A ; Asadian, E ; Jia, R ; Shi, L ; Huang, L ; Moshfegh, A. Z ; Sharif University of Technology
    American Chemical Society  2022
    Abstract
    The fabrication of supported noble metal nanocrystals (NCs) with well-controlled morphologies have been attracted considerable interests due to their merits in a wide variety of applications. Photodeposition is a facile and effective method to load metals over semiconductors in a simple slurry reactor under irradiation. By optimizing the photodeposition process, the size, chemical states, and the geometrical distribution of metal NCs have been successfully tuned. However, metal NCs with well-controlled shapes through the photodeposition process have not been reported until now. Here, we report our important advances in the controlled photodeposition process to load regular noble metal NCs.... 

    Super-hydrophilic characteristic of thermochemically prepared CdS nanocrystals

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Vol. 58 , April , 2014 , pp. 146-152 ; ISSN: 13869477 Marandi, M ; Taghavinia, N ; Babaei, A ; Sharif University of Technology
    Abstract
    CdS nanocrystals were thermochemically (thermally activated) synthesized thorough the reaction between CdSO4 and Na2S 2O3 in an aqueous solution. Thioglycolic Acid (TGA) was used as the capping agent and catalyst of the reaction. The method was based on heat activated dissociation of Na2S2O3 and controllable release of S and free electrons in the solution. CdS NCs were formed by heating the sample solution at 96 C for 1 h. The results of optical spectroscopy and transmission electron microscopy demonstrated round shape NCs with sizes about 3.0 nm. The nanocrystals were also luminescent and represented a broad emission with a peak located at 515 nm and FWHM of 160 nm. Several samples were... 

    From continuous to quantized charging phenomena in few nanocrystals MOS structures

    , Article 11th International Autumn Meeting on Gettering and Defect Engineering in Semiconductor Technology, GADEST 2005, 25 September 2005 through 30 September 2005 ; Volume 108-109 , 2005 , Pages 25-32 ; 10120394 (ISSN); 9783908451136 (ISBN) Benassayag, G ; Shalchian, M ; Grisolia, J ; Bonafos, C ; Atarodi, S. M ; Claverie, A ; Pichaud B ; Claverie A ; Alquier D ; Richter H ; Kittler M ; Richter H ; Kittler M ; Sharif University of Technology
    Trans Tech Publications Ltd  2005
    Abstract
    In this paper, we present a study on the contribution of silicon nanocrystals to the electrical transport characteristics of large (100 µ x 100 µm) and small (100 nm x 100 nm) metaloxide- semiconductor (MOS) capacitors at room temperature. A layer of silicon nanocrystals is synthesized within the oxide of these capacitors by ultra-low energy ion implantation and annealing. Several features including negative differential resistance (NDR), sharp current peaks and random telegraph signal (RTS) are demonstrated in the current-voltage and current-time characteristics of these capacitors. These features have been associated to charge storage in silicon nanocrystals and to the resulting Coulomb... 

    Near-white emitting QD-LED based on hydrophilic CdS nanocrystals

    , Article Journal of Luminescence ; Volume 132, Issue 2 , 2012 , Pages 467-473 ; 00222313 (ISSN) Molaei, M ; Marandi, M ; Saievar Iranizad, E ; Taghavinia, N ; Liu, B ; Sun, H. D ; Sun, X. W ; Sharif University of Technology
    Abstract
    In this work we report fabrication of a nanocrystal (NC)-based hybrid organicinorganic LED with structure of ITO/PEDOT:PSS/PVK/CdS-NCs/(Al or Mg:Ag). The hydrophilic CdS NCs were synthesized using a novel aqueous thermochemical method at 80 °C and sizes (around 2 nm) were controlled by thioglycolic acid (TGA) as the capping agent. The favorite feature of these NCs is their relatively high emission intensity and broad, near-white emission. The hydrophilic CdS NCs were successfully spin coated using Triton X-100 as the wetting agent. The fabricated LEDs demonstrated a turn on voltage about 7 V for Al metallic contact. The electroluminescence was a broad spectrum at 540 and 170 nm width, which... 

    Heterogeneous catalytic ozonation by Nano-MgO is better than sole ozonation for metronidazole degradation, toxicity reduction, and biodegradability improvement

    , Article Desalination and Water Treatment ; Volume 57, Issue 35 , 2016 , Pages 16435-16444 ; 19443994 (ISSN) Kermani, M ; Bahrami Asl, F ; Farzadkia, M ; Esrafili, A ; Salahshour Arian, S ; Khazaei, M ; Dadban Shahamat, Y ; Zeynalzadeh, D ; Sharif University of Technology
    Taylor and Francis Inc  2016
    Abstract
    Abstract: In the current paper, the removal efficiency of metronidazole (MNZ) using a catalytic ozonation process (COP) in the presence of magnesium oxide nanocrystals, as a catalyst, was investigated in deionized water and compared with a sole ozonation process (SOP). The influence of several operational factors on both removal processes was evaluated: solution pH, MgO dosage, initial MNZ concentration, and reaction time. Biodegradability improvement, mineralization rate, oxidation intermediates, and toxicity were also studied for the COP. The results showed that MgO nanocrystals accelerated MNZ removal compared to the SOP. The optimum pH for both SOP and COP was obtained at 10 and optimum... 

    Effect of hydrazine hydrate on the luminescence properties of MPA capped CdTe nanocrystals in hot injection method

    , Article Journal of Luminescence ; Vol. 156, issue , 2014 , p. 235-239 Mobedi, N ; Marandi, M ; Zare Bidaki, H ; Sharif University of Technology
    Abstract
    In this research MPA capped CdTe nanocrystals with sizes around 2.7-3.5 nm were grown in aqueous solution. The process was performed through the reaction of NaHTe with MPA and CdCl2 solution in high temperature. The synthesis was carried out in two different states of standard and modified forms. In the modified synthesis, the hydrazine hydrate material was added to the MPA plus CdCl2 solution before injection. The evolution of the nanocrystals size and PL quantum yield was monitored during the heating time for the growth. The results demonstrated that for the standard synthesis the growth rate was slow. The CdTe nanocrystals with high PL quantum yields were achieved in more than 10 h of... 

    Novel aspects of application of cadmium telluride quantum dots nanostructures in radiation oncology

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 8 , 2017 ; 09478396 (ISSN) Fazaeli, Y ; Zare, H ; Karimi, S ; Rahighi, R ; Feizi, S ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    In the last two decades, quantum dots nanomaterials have garnered a great deal of scientific interest because of their unique properties. Quantum dots (QDs) are inorganic fluorescent nanocrystals in the size range between 1 and 20 nm. Due to their structural properties, they possess distinctive properties and behave in different way from crystals in macro scale, in many branches of human life. Cadmium telluride quantum dots (CdTe QDs) were labeled with 68Ga radio nuclide for fast in vivo targeting and coincidence imaging of tumors. Using instant paper chromatography, the physicochemical properties of the Cadmium telluride quantum dots labeled with 68Ga NPs (68Ga@ CdTe QDs) were found high... 

    Effect of combined shot peening and ultrasonic nanocrystal surface modification processes on the fatigue performance of AISI 304

    , Article Surface and Coatings Technology ; Volume 358 , 2019 , Pages 695-705 ; 02578972 (ISSN) Amanov, A ; Karimbaev, R ; Maleki, E ; Unal, O ; Pyun, Y. S ; Amanov, T ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In this study, the fatigue performance of AISI 304 subjected to shot peening (SP), ultrasonic nanocrystal surface modification (UNSM) and the combination of SP + UNSM processes was systematically assessed by rotary bending fatigue (RBF) tester at different stress levels. The purpose of combining SP and UNSM processes is to find out whether SP following UNSM process can further improve the fatigue life of AISI 304 in comparison with the SP and UNSM processes alone. Interestingly, the fatigue strength of AISI 304 was deteriorated by the combination of SP + UNSM processes in comparison with the UNSM process alone, but the combination of SP + UNSM processes demonstrated a higher fatigue strength... 

    Processing and Investigation of the Properties of Chitosan/Celloluse Nanocomposite Wound Dressing Fabricated by Electrospinning Method

    , M.Sc. Thesis Sharif University of Technology Faraji Safiloo, Negar (Author) ; Bagheri, Reza (Supervisor)
    Abstract
    It is a common method to use some proper materials such as honey, herbal fibers, and minerals for covering the wounds as an effective treatment. Nowadays biopolymers and new methods of nanofiber production to build a structure similar to the natural extracellular matrix (ECM) like electrospinning are used to reduce the time of restoration and prevent from the effects of wounds such as bedsores, diabetic ulcers, and severe burns. For effective design of a wound dressing, wound feature, recovery time, physical, mechanical, and biological properties should be considered in order to best as possible heal the bound. In this research, cellulose nanocrystals with average aspect ratio of 11.8 and... 

    A Coarse -Grained Model for Molecular Dynamics Simulation of Crystalline Nano- Structures

    , M.Sc. Thesis Sharif University of Technology Ahmadzadeh, Baharan (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsen ($item.subfieldsMap.e)
    Abstract
    In this work, we investigate the application of coarse graining (CG) methods to molecular dynamics (MD) simulations. These methods provide access to length and time scales previously inaccessible to traditional materials, simulation techniques. However, care must be taken when applying any coarse graining strategy to ensure that we preserve the material properties of the system we are interested in. The most prominent of these techniques is the so called multi scale coarse graining (MS-CG) method. In this study we will focus on the modeling of crystalline Nano structures using coarse graining as one of the approaches in multi scale analysis the force matching method is mainly followed to... 

    Sonochemical synthesis of SrTiO3 nanocrystals at low temperature

    , Article International Journal of Applied Ceramic Technology ; Volume 12, Issue S2 , 2015 , Pages E202-E206 ; 1546542X (ISSN) Ashiri, R ; Ajami, R ; Moghtada, A ; Sharif University of Technology
    Blackwell Publishing Ltd  2015
    Abstract
    This work aims to develop an innovative low-temperature sonochemical synthesis pathway for synthesizing the carbonate-free SrTiO3 nanocrystals with tailored morphology. Ultrasonication causes the formation of stoichiometric SrTiO3 nanocrystals and accelerates their formation. Moreover, SrTiO3 nanocrystals are synthesized at low temperature. The methodology described here is simple, fast, cost-effective, and useful for large-scale production purposes  

    From continuous to quantized charging phenomena in few nanocrystals MOS structures

    , Article 11th International Autumn Meeting on Gettering and Defect Engineering in Semiconductor Technlogy, GADEST 2005, Giens, 25 September 2005 through 30 September 2005 ; Volume 108-109 , 2005 , Pages 25-32 ; 10120394 (ISSN); 3908451132 (ISBN); 9783908451136 (ISBN) BenAssayag, G ; Shalchian, M ; Grisolia, J ; Bonafos, C ; Atarodi, S. M ; Claverie, A ; Sharif University of Technology
    Trans Tech Publications Ltd  2005
    Abstract
    In this paper, we present a study on the contribution of silicon nanocrystals to the electrical transport characteristics of large (100 μm × 100 μm) and small (100 nm × 100 nm) metaloxide-semiconductor (MOS) capacitors at room temperature. A layer of silicon nanocrystals is synthesized within the oxide of these capacitors by ultra-low energy ion implantation and annealing. Several features including negative differential resistance (NDR), sharp current peaks and random telegraph signal (RTS) are demonstrated in the current-voltage and current-time characteristics of these capacitors. These features have been associated to charge storage in silicon nanocrystals and to the resulting Coulomb... 

    Hydrothermal synthesis of TiO2 nanocrystals in different basic pHs and their applications in dye sensitized solar cells

    , Article Physica E: Low-Dimensional Systems and Nanostructures ; Volume 70 , June , 2015 , Pages 113-120 ; 13869477 (ISSN) Anajafi, Z ; Marandi, M ; Taghavinia, N ; Sharif University of Technology
    Elsevier  2015
    Abstract
    In this research TiO2 nanocrystals with sizes about 11-70 nm were grown by hydrothermal method. The process was performed in basic autoclaving pH in the range of 8.0-12.0. The synthesized anatase phase TiO2 nanocrystals were then applied in the phtoanode of the dye sensitized solar cells. It was shown that the final average size of the nanocrystals was larger when the growth was carried out in higher autoclaving pHs. The photoanodes made of TiO2 nanocrystals prepared in the pHs of 8.0 and 9.0 represented low amounts of dye adsorption and light scattering. The performance of the corresponding dye sensitized solar cells was also not acceptable. Nevertheless, the energy conversion efficiency... 

    An improvement in fatigue behavior of AISI 4340 steel by shot peening and ultrasonic nanocrystal surface modification

    , Article Materials Science and Engineering A ; Volume 791 , 2020 Karimbaev, R ; Pyun, Y. S ; Maleki, E ; Unal, O ; Amanov, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Individual and synergy effects of shot peening (SP) and ultrasonic nanocrystal surface modification (UNSM) on rotary bending fatigue (RBF) behavior of AISI 4340 steel were systematically investigated at various bending stress levels in the range of 275–600 MPa. The results revealed that the fatigue behavior of the as-received sample was enhanced by SP and it was further enhanced by SP and UNSM combination, while the UNSM-treated one exhibited the highest enhancement in fatigue behavior. The fatigue behavior of the SP + UNSM sample was enhanced after SP, but it was found to be detrimental after UNSM. Apart from RBF experiments, individual and synergy effects of SP and UNSM on surface... 

    Effects of constrained groove pressing, severe shot peening and ultrasonic nanocrystal surface modification on microstructure and mechanical behavior of S500MC high strength low alloy automotive steel

    , Article Applied Surface Science ; Volume 538 , 2021 ; 01694332 (ISSN) Karademir, I ; Celik, M. B ; Husem, F ; Maleki, E ; Amanov, A ; Unal, O ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    S500MC high strength low alloy automotive steel is exposed to bulk severe plastic deformation (SPD) via constrained groove pressing (CGP) and surface severe plastic deformation (S2PD) via severe shot peening (SSP) and ultrasonic nanocrystal surface modification (UNSM). SSP and UNSM could create a nanocrystallization layer till 50–100 µm away from outmost surface. EBSD investigations showed average nano-grain size obtained via SSP and UNSM was found to be below 100 nm regime. The strength was improved via 1st to 4th pass of CGP, but elongation percentage decreased abruptly. UNSM achieves both strength-ductility improvement with gradient structure. SSP improves the total elongation however a... 

    Sb2S3 and Cu3SbS4 nanocrystals as inorganic hole transporting materials in perovskite solar cells

    , Article Solar Energy ; Volume 223 , 2021 , Pages 106-112 ; 0038092X (ISSN) Mohamadkhani, F ; Heidariramsheh, M ; Javadpour, S ; Ghavaminia, E ; Mahdavi, S. M ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    One of the key parts of perovskite solar cells which has great influence on their performance and stability is hole transporting layer. Spiro-OMeTAD is extensively used as organic hole transporting material in perovskite solar cells. However, Spiro-OMeTAD is expensive and has low chemical stability. In this study, the solution processed Sb2S3 and Cu3SbS4 nanocrystals have been synthesized and then the n-i-p mesoscopic perovskite solar cells have been fabricated using Spiro-OMeTAD, Sb2S3 and Cu3SbS4 nanocrystals as hole transporting layer at ambient air condition. It is shown that the conduction and valence band levels of the synthesized Sb2S3 and Cu3SbS4 nanocrystals are in the proper...