Search for: nanoencapsulation
0.006 seconds

    Pyromellitic dianhydride crosslinked cyclodextrin nanosponges for curcumin controlled release; formulation, physicochemical characterization and cytotoxicity investigations

    , Article Journal of Microencapsulation ; Volume 36, Issue 8 , 2019 , Pages 715-727 ; 02652048 (ISSN) Rafati, N ; Zarrabi, A ; Caldera, F ; Trotta, F ; Ghias, N ; Sharif University of Technology
    Taylor and Francis Ltd  2019
    Aim: In this study, a nanosponge structure was synthesised with capability of encapsulating curcumin as a model polyphenolic compound and one of the herbal remedies that have widely been considered due to its ability to treat cancer. Methods: FTIR, DSC and XRD techniques were performed to confirm the formation of the inclusion complex of the nanosponge-drug. Results: DSC and XRD patterns showed an increasing stability and a decreasing crystallinity of curcumin after formation of inclusion complex. Encapsulation efficiency was 98% (w/w) and a significant increase was observed in loading capacity (184% w/w). The results of cytotoxicity assessments demonstrated no cell toxicity on the healthy... 

    Nano mesoporous silica for cancer treatment: ROS-responsive and redox-responsive carriers

    , Article Journal of Drug Delivery Science and Technology ; Volume 57 , 2020 Bahrami, F ; Abdekhodaie, M. J ; Behroozi, F ; Mehrvar, M ; Sharif University of Technology
    Editions de Sante  2020
    Reactive oxygen species ROS and redox agents are two features of cancer medium, which could be used through responsive drug delivery systems for cancer treatment. Furthermore, mesoporous silica nanoparticles (MSNs) have special characteristics to use them in ROS-responsive and redox-responsive carriers. To shed light on this issue, we propose two drug delivery systems: 1) responsive to hydrogen peroxide (a ROS component) and 2) responsive to dithiothreitol (a redox agent). The proposed carriers are composed of 4 parts: MSNs, responsive agent (selenocystine for ROS-responsive and dithiodipropionic for the redox-responsive carrier), hyaluronic acid as the coating and targeting agent, and the... 

    Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs

    , Article Journal of Drug Delivery Science and Technology ; Volume 56 , 2020 Pourjavadi, A ; Asgari, S ; Hosseini, S. H ; Sharif University of Technology
    Editions de Sante  2020
    In this work, a novel carrier based-on modified graphene oxide was designed for co-delivery of hydrophobic and hydrophilic anticancer drugs (curcumin (Cur) and doxorubicin (DOX) as the model of drugs). The hydroxyl groups at the edges of graphene oxide (GO) sheets were used as the initiation sites for growing poly(epichlorohydrin) (PCH) chains. Then, hyperbranched polyglycerol (HPG) was grafted on the hydroxyl end groups of PCH (PCH-g-HPG). Pendant chlorines in the main chain of GO-PCH-g-HPG were replaced with hydrazine. The modification of GO sheets with oxygen-rich polymers increased water solubility of graphene oxide. Doxorubicin was loaded onto the nanocarrier by covalent bonding with... 

    A hepatocellular carcinoma–bone metastasis-on-a-chip model for studying thymoquinone-loaded anticancer nanoparticles

    , Article Bio-Design and Manufacturing ; Volume 3, Issue 3 , 2020 , Pages 189-202 Sharifi, F ; Yesil Celiktas, O ; Kazan, A ; Maharjan, S ; Saghazadeh, S ; Firoozbakhsh, K ; Firoozabadi, B ; Zhang, Y. S ; Sharif University of Technology
    Springer  2020
    We report the development of a metastasis-on-a-chip platform to model and track hepatocellular carcinoma (HCC)–bone metastasis and to analyze the inhibitory effect of an herb-based compound, thymoquinone (TQ), in hindering the migration of liver cancer cells into the bone compartment. The bioreactor consisted of two chambers, one accommodating encapsulated HepG2 cells and one bone-mimetic niche containing hydroxyapatite (HAp). Above these chambers, a microporous membrane was placed to resemble the vascular barrier, where medium was circulated over the membrane. It was observed that the liver cancer cells proliferated inside the tumor microtissue and disseminated from the HCC chamber to the... 

    Antibiotic-loaded chitosan–Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies

    , Article Journal of Materials Science: Materials in Medicine ; Volume 26, Issue 12 , December , 2015 ; 09574530 (ISSN) Ordikhani, F ; Dehghani, M ; Simchi, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract: In this study, chitosan–Laponite nanocomposite coatings with bone regenerative potential and controlled drug-release capacity are prepared by electrophoretic deposition technique. The controlled release of a glycopeptide drug, i.e. vancomycin, is attained by the intercalation of the polymer and drug macromolecules into silicate galleries. Fourier-transform infrared spectrometry reveals electrostatic interactions between the charged structure of clay and the amine and hydroxyl groups of chitosan and vancomycin, leading to a complex positively-charged system with high electrophoretic mobility. By applying electric field the charged particles are deposited on the surface of titanium... 

    Nanocapsules based on carbon nanotubes-graft-polyglycerol hybrid materials

    , Article Nanotechnology ; Volume 20, Issue 48 , 2009 ; 09574484 (ISSN) Adeli, M ; Mirab, N ; Zabihi, F ; Sharif University of Technology
    In this work the effect of a conjugated macromolecule on the conformation of CNT was studied. Typically polyglycerol (PG) was covalently grafted onto the surface of multi-wall carbon nanotubes (MWCNTs) and MWCNT-graft-PG (MWCNT- g-PG) hybrid materials were obtained. Dynamic light scattering (DLS) experiments showed an average diameter around 100nm for MWCNT- g-PG hybrid materials in water. The difference between this size and the expected size for MWCNT- g-PG hybrid materials (the length of pristine MWCNTs was several micrometers) was assigned to the effect of the grafted PG on the conformation of MWCNT in the solution state. Transmission electron microscopy (TEM) evaluations showed a change... 

    Preparation, physicochemical properties, in vitro evaluation and release behavior of cephalexin-loaded niosomes

    , Article International Journal of Pharmaceutics ; Volume 569 , 2019 ; 03785173 (ISSN) Ghafelehbashi, R ; Akbarzadeh, I ; Tavakkoli Yaraki, M ; Lajevardi, A ; Fatemizadeh, M ; Heidarpoor Saremi, L ; Sharif University of Technology
    Elsevier B.V  2019
    In this study, optimized cephalexin-loaded niosomal formulations based on span 60 and tween 60 were prepared as a promising drug carrier system. The niosomal formulations were characterized using a series of techniques such as scanning electron microscopy, Fourier transformed infrared spectroscopy, dynamic light scattering, and zeta potential measurement. The size and drug encapsulation efficiency are determined by the type and composition of surfactant. The developed niosomal formulations showed great storage stability up to 30 days with low change in size and drug entrapment during the storage, making them potential candidates for real applications. Moreover, the prepared niosomes showed... 

    Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment

    , Article Biophysical Reviews ; Volume 11, Issue 3 , 2019 , Pages 335-352 ; 18672450 (ISSN) Khafaji, M ; Zamani, M ; Golizadeh, M ; Bavi, O ; Sharif University of Technology
    Springer Verlag  2019
    During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard,... 

    Folate conjugated hyaluronic acid coated alginate nanogels encapsulated oxaliplatin enhance antitumor and apoptosis efficacy on colorectal cancer cells (HT29 cell line)

    , Article Toxicology in Vitro ; Volume 65 , 2020 Movahedi Shad, P ; Zare Karizi, S ; Safaie Javan, R ; Mirzaie, A ; Noorbazargan, H ; Akbarzadeh, I ; Rezaie, H ; Sharif University of Technology
    Elsevier Ltd  2020
    Oxaliplatin (OXA) has been widely used for treatment of colorectal cancer. In this study, to enhance antitumor and apoptosis efficacy, OXA was encapsulated in a novel folate conjugated hyaluronic acid coated alginate nanogels (F/HA/AL/OXA). The F/HA/AL/OXA nanogels were prepared by cross-linking process. The physico-chemical properties of F/HA/AL/OXA nanogels were characterized using scanning electron microscopy, transmission electron microscopy, fourier transform infrared spectroscopy, dynamic light scattering, and fluorescent spectrophotometry. The in-vitro antitumor activity of free OXA, AL, HA/AL, HA/AL/OXA and F/HA/AL/OXA nanogels were assessed using MTT assay against colorectal cancer... 

    Superparamagnetic iron oxide nanoparticles (SPIONs): Development, surface modification and applications in chemotherapy

    , Article Advanced Drug Delivery Reviews ; Volume 63, Issue 1-2 , January–February , 2011 , Pages 24-46 ; 0169409X (ISSN) Mahmoudi, M ; Sant, S ; Wang, B ; Laurent, S ; Sen, T ; Sharif University of Technology
    At present, nanoparticles are used for various biomedical applications where they facilitate laboratory diagnostics and therapeutics. More specifically for drug delivery purposes, the use of nanoparticles is attracting increasing attention due to their unique capabilities and their negligible side effects not only in cancer therapy but also in the treatment of other ailments. Among all types of nanoparticles, biocompatible superparamagnetic iron oxide nanoparticles (SPIONs) with proper surface architecture and conjugated targeting ligands/proteins have attracted a great deal of attention for drug delivery applications. This review covers recent advances in the development of SPIONs together... 

    A core–shell titanium dioxide polyaniline nanocomposite for the needle-trap extraction of volatile organic compounds in urine samples

    , Article Journal of Separation Science ; Volume 40, Issue 9 , 2017 , Pages 1985-1992 ; 16159306 (ISSN) Banihashemi, S ; Bagheri, H ; Sharif University of Technology
    Wiley-VCH Verlag  2017
    We synthesized a titanium dioxide–polyaniline core–shell nanocomposite and implemented it as an efficient sorbent for the needle-trap extraction of some volatile organic compounds from urine samples. Polyaniline was synthesized, in the form of the emeraldine base, dissolved in dimethyl acetamide followed by diluting with water at pH 2.8, using the interfacial polymerization method. The TiO2 nanoparticles were encapsulated inside the conducting polymer shell, by adapting the in situ dispersing approach. The surface characteristics of the nanocomposite were investigated by Fourier transform infrared spectrometry, scanning electron microscopy, and transmission electron microscopy. After... 

    Bioinspired nanofiber scaffold for differentiating bone marrow-derived neural stem cells to oligodendrocyte-like cells: Design, fabrication, and characterization

    , Article International Journal of Nanomedicine ; Volume 15 , 2020 , Pages 3903-3920 Boroojeni, F. R ; Mashayekhan, S ; Abbaszadeh, H. A ; Ansarizadeh, M ; Khoramgah, M. S ; Rahimi Movaghar, V ; Sharif University of Technology
    Dove Medical Press Ltd  2020
    Background: Researchers are trying to study the mechanism of neural stem cells (NSCs) differentiation to oligodendrocyte-like cells (OLCs) as well as to enhance the selective differentiation of NSCs to oligodendrocytes. However, the limitation in nerve tissue acces-sibility to isolate the NSCs as well as their differentiation toward oligodendrocytes is still challenging. Purpose: In the present study, a hybrid polycaprolactone (PCL)-gelatin nanofiber scaffold mimicking the native extracellular matrix and axon morphology to direct the differentiation of bone marrow-derived NSCs to OLCs was introduced. Materials and Methods: In order to achieve a sustained release of T3, this factor was... 

    Recent advances in porphyrin-based nanocomposites for effective targeted imaging and therapy

    , Article Biomaterials ; Volume 232 , 2020 Rabiee, N ; Tavakkoli Yaraki, M ; Mokhtari Garakani, S ; Mokhtari Garakani, S ; Ahmadi, S ; Lajevardi, A ; Bagherzadeh, M ; Rabiee, M ; Tayebi, L ; Tahriri, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier Ltd  2020
    Porphyrins are organic compounds that continue to attract much theoretical interest, and have been called the “pigments of life”. They have a wide role in photodynamic and sonodynamic therapy, along with uses in magnetic resonance, fluorescence and photoacoustic imaging. There is a vast range of porphyrins that have been isolated or designed, but few of them have real clinical applications. Due to the hydrophobic properties of porphyrins, and their tendency to aggregate by stacking of the planar molecules they are difficult to work with in aqueous media. Therefore encapsulating them in nanoparticles (NPs) or attachment to various delivery vehicles have been used to improve delivery... 

    Design of experiment, preparation, and in vitro biological assessment of human amniotic membrane extract loaded nanoparticles

    , Article Current Pharmaceutical Biotechnology ; Volume 21, Issue 3 , 2020 , Pages 256-267 Shabani, A ; Atyabi, F ; Khoshayand, M. R ; Mahbod, R ; Cohan, R. A ; Akbarzadeh, I ; Bakhshandeh, H ; Sharif University of Technology
    Bentham Science Publishers  2020
    Background: Human amniotic membrane grafting could be potentially useful in ocular surface complications due to tissue similarity and the presence of factors that reduce inflammation, vascu-larization, and scarring. However, considerations like donor-derived infectious risk and the requirement of an invasive surgery limit the clinical application of such treatments. Moreover, the quick depletion of bioactive factors after grafting reduces the efficacy of treatments. Therefore, in the current study, the possibility of nano delivery of the bioactive factors extracted from the human amniotic membrane to the ocular surface was investigated. Materials and Methods: Nanoparticles were prepared...