Loading...
Search for: nanoindentation-tests
0.005 seconds

    Effect of nano Al2O3 addition on mechanical properties and wear behavior of NiTi intermetallic

    , Article Materials and Design ; Volume 51 , October , 2013 , Pages 375-382 ; 02613069 (ISSN) Farvizi, M ; Ebadzadeh, T ; Vaezi, M. R ; Kim, H. S ; Simchi, A ; Sharif University of Technology
    Elsevier Ltd  2013
    Abstract
    It has been found that the high wear resistance of NiTi alloy is mainly attributed to its pseudoelasticity which is only effective within a small temperature range. It is believed that pseudoelasticity becomes ineffective by applying high-load wear condition which yields plastic deformation and temperature increment during wear test. Therefore, the enhanced wear resistance can be obtained from the improvement of mechanical property of the alloy without much reduction of pseudoelasticity. In this study, a low weight percentage of hard Al2O3 nanoparticles were added to NiTi atomized powders. The resultant powder mixture was homogenized by ball milling and sintered in a vacuum furnace in order... 

    Loading drug on nanostructured Ti6Al4V-HA for implant applications

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 31, Issue 8 , 2018 , Pages 1159-1165 ; 1728144X (ISSN) Abbaspour, S ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2018
    Abstract
    Arrayed Ti6Al4V nanotubes (TNT) coated with hydroxyapatite (HA) were synthesized via electrochemical anodization method. Paracetamol was loaded onto TNT-HA electrode. Effects of anodization, nanotube formation and hydroxyapatite deposition on sorption and release of the drug were investigated. Saturation time of paracetamol on the anodized samples was 30% shorter than the hydroxyapatite-coated samples. Release behavior of the loaded drug was studied by (a) plunging the probe into phosphate buffered saline (PBS), (b) sampling the drug-loaded PBS at different times and (c) analyzing the solution via ultraviolet-visible (UV-vis) spectroscopy. Results showed that HA electrodes hold higher... 

    Experimental investigation and finite element simulation of the effect of surface roughness on nanoscratch testing

    , Article Journal of Mechanical Science and Technology ; Volume 33, Issue 5 , 2019 , Pages 2331-2338 ; 1738494X (ISSN) Nazemian, M ; Chamani, M ; Sharif University of Technology
    Korean Society of Mechanical Engineers  2019
    Abstract
    Nanoscratch testing is a highly reliable method used to extract a variety of film properties. It is proven that many of the experimental factors can influence the obtained results, such as the probe tilt, the scratch depth, etc. On the other hand, the surface roughness of the samples is an important parameter in nanoscratch and other similar tests, including the nanoindentation test. Thus, the effect of surface roughness on both the nanoscratch experiments and finite element simulations has been investigated. By performing scratch tests on gold and copper films and carrying out the finite element (FE) simulations on the rough and smooth surfaces, the importance of surface morphology was... 

    Thermomechanical synthesis of hybrid in-situ Al-(Al3Ti+Al2O3) composites through nanoscale Al-Al2TiO5 reactive system

    , Article Journal of Alloys and Compounds ; Volume 789 , 2019 , Pages 493-505 ; 09258388 (ISSN) Ahmadvand, M. S ; Azarniya, A ; Madaah Hosseini, H. R ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    In this work, nanostructured aluminum titanate (Al2TiO5 or AT) was synthesized by the citrate sol gel method. Then, different volume fractions of this ceramic were blended with Al powder through different durations of the high-energy vibratory milling. The effect of mechanical milling on the thermal degradation of AT in exposure to Al and formation mechanism of in-situ Al2O3 and Al3Ti particles were explored in three conditions: (i) in the powder form; (ii) after annealing of green compact; and (iii) after hot extrusion. In the powder form, it was shown that the mechanical milling is able to significantly diminish the thermal stability of AT, so that the required temperature for the Al3Ti... 

    Optimization of nano HA-SiC coating on AISI 316L medical grade stainless steel via electrophoretic deposition

    , Article Materials Letters ; Volume 285 , 2021 ; 0167577X (ISSN) Hosseini, M. R ; Ahangari, M ; Johar, M. H ; Allahkaram, S. R ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Biocompatible nanostructured coating plays an important role in enhancement of osseointegration ability of metallic implants. This study sets out to obtain optimized SiC concentration in Hydroxyapatite (HA) coating on AISI 316L stainless steel alloy through electrophoretic deposition method. Effect of SiC concentrations (1, 2, and 3%.wt) on the morphology, corrosion behaviour, and mechanical properties of the HA coating is investigated. Results show that SiC could obstruct the formation and growth of micro cracks in the HA coating where HA-3%SiC is considered as a crack free coating. Electrochemical tests reveal that SiC has improved the corrosion resistance of HA coating, and HA-3%SiC... 

    Nanomechanical properties of TiO2 granular thin films

    , Article ACS Applied Materials and Interfaces ; Volume 2, Issue 9 , 2010 , Pages 2629-2636 ; 19448244 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Volinsky, A.A ; Sharif University of Technology
    2010
    Abstract
    Post-deposition annealing effects on nanomechanical properties of granular TiO2 films on soda-lime glass substrates were studied. In particular, the effects of Na diffusion on the films' mechanical properties were examined. TiO2 photocatalyst films, 330 nm thick, were prepared by dip-coating using a TiO2 sol, and were annealed between 100 °C and 500 °C. Film's morphology, physical and nanomechanical properties were characterized by atomic force microscopy, X-ray photoelectron spectroscopy, X-ray diffraction, differential thermo-gravimetric analysis, and nanoindentation. Contrary to expectations, the maximum film hardness was achieved for 300°C annealing, with a value of 0.69 ± 0.05 GPa....