Loading...
Search for: nanomechanics
0.006 seconds
Total 25 records

    Pull-in parameters of cantilever type nanomechanical switches in presence of Casimir force

    , Article Nonlinear Analysis: Hybrid Systems ; Volume 1, Issue 3 , 2007 , Pages 364-382 ; 1751570X (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2007
    Abstract
    In this paper, the effect of the Casimir force on pull-in parameters of cantilever type nanomechanical switches is investigated by using a distributed parameter model. In modeling of the electrostatic force, the fringing field effect is taken into account. The model is nonlinear due to the inherent nonlinearity of the Casimir and electrostatic forces. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The pull-in parameters of the switch are computed in three cases including nanoactuators... 

    Multi-scale Modeling of Crack Using Nano-XFEM

    , M.Sc. Thesis Sharif University of Technology Ghaffari, Reza (Author) ; Haddadpour, Hassan (Supervisor)
    Abstract
    In this thesis a mutliScale model based on the Cauchy-Born hypothesis and via usage of XFEM is proposed for crack modeling. By solving an example, the important of surface effects in the surface stresses region is shown. Considering not being able to model the surface effects with the Cauchy-Born method, the boundary Cauchy-Born method for modeling crack effects is used. Moreover, three Molecular Dynamics method for modeling crack will be proposed. According to the obtained results from these methods, it was deduced that for calculating the correct surface stresses in Molecular Dynamics the mutual interaction of upper and lower atoms of crack should be omitted. Finally, the validation of... 

    An analytical approach to determination of bending modulus of a multi-layered graphene sheet

    , Article Thin Solid Films ; Volume 496, Issue 2 , 2006 , Pages 475-480 ; 00406090 (ISSN) Behfar, K ; Seifi, P ; Naghdabadi, R ; Ghanbari, J ; Sharif University of Technology
    2006
    Abstract
    In this paper, the bending modulus of a multi-layered graphene sheet is investigated using a geometrically based analytical approach. For this purpose, a bending potential energy is derived, based on the van der Waals interactions of atoms belonging to the two neighboring sheets of a double-layered graphene sheet. The inter-atomic spacing between the adjacent layers is determined along the line of action of the applied bending moments. The bending potential of the double-layered sheet is calculated by summing up the potentials at discrete hexagons over the length and width of the sheet. A multi-layered graphene sheet is considered as consisting of many stacking double-layers. It is observed... 

    Modeling of Carbon Nanotubes with Molecular Dynamics and Application of Parallel Processing

    , M.Sc. Thesis Sharif University of Technology Banihashemi, Parsa (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Nanotechnology is the knowledge of future. Some people Compare the initialization of nanotechnology to the beginning of the industrial revolution. Experimental modeling of nano-materials can be so expensive, but, with the aid of computational nanomechanics, we can perform less experiments and more numerical simulation. In the past decades, applications of nanotubes in medicine, electrical engineering, mechanical engineering, building nano sensors, nano engines and etc caused a pervasive study on the mechanics of carbon nanotubes. In this Thesis, the writer has implemented the Tersoff interatomic potential to perform molecular dynamics simulations of carbon nanotubes. In this work, tensile... 

    Temperature-Dependent Hierarchical Multi-Scale Modeling of Nano-Materials Considering Surface Effect

    , M.Sc. Thesis Sharif University of Technology Ghahremani, Pegah (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    In continuum mechanics, the constitutive models are usually based on the Cauchy-Born (CB) hypothesis which seeks the intrinsic characteristics of the material via the atomistic information and it is valid in small deformation. The main purpose of this thesis is to investigate the temperature effect on the stability and size dependency of Cauchy-Born hypothesis and a novel temperature-dependent multi-scale method is developed to investigate the role of temperature on surface effects in the analysis of nano-scale materials. Three-dimensional temperature-related Cauchy-Born formulation are developed for crystalline structure and the stability and size dependency of temperature-related... 

    Concurrent Multi-Scale Approach for Modeling Mechanical Behavior of Crystalline Nano-Structures

    , M.Sc. Thesis Sharif University of Technology Aramoon, Amin (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    Mindboggling advances in nanotechnology have urged researchers to develop state-of-the-art numerical methods to enable them to simulate and to interpret phenomena at this scale. Unfortunately, Classical models have numerous shortcomings which hinder their applications in new contexts. For instance, classical Continuum Mechanics fails to appropriately depict material behavior at small scales, and, on the other hand, Molecular Dynamics simulations are computationally prohibitive. As a consequence, researchers have devised multi-scale methods during the past decade to overcome these obstacles. In fact, in multi-scale methods information is passed from one mathematical description to the other.... 

    Heat transfer between micro- and nano-mechanical systems through optical channels

    , Article Journal of the Optical Society of America B: Optical Physics ; Vol. 31, issue. 7 , 2014 , pp. 1525-1532 ; ISSN: 07403224 Farman, F ; Bahrampour, A. R ; Sharif University of Technology
    Abstract
    In this paper, a new mechanism of heat transfer is introduced. It is shown that, without emission and absorption of photons, light can operate as a channel of heat transfer between nano- or micro-mechanical oscillators. We consider the dynamics of two vibrating mirrors coupled through one optical cavity mode in an optomechanical system. It is shown that light mediates heat transfer between two micro-mirrors. When the detuning frequency of the mechanical resonators is low, fluctuations flow through the light channel from the high temperature vibrating mirror toward the low temperature one. This behavior is named the resonance heat transfer effect. The rate of heat flow between the mechanical... 

    A molecular dynamics simulation study of nanomechanical properties of asymmetric lipid bilayer

    , Article Journal of Membrane Biology ; Volume 246, Issue 1 , 2013 , Pages 67-73 ; 00222631 (ISSN) Maftouni, N ; Amininasab, M ; Vali, M ; Ejtehadi, M ; Kowsari, F ; Sharif University of Technology
    2013
    Abstract
    A very important part of the living cells of biological systems is the lipid membrane. The mechanical properties of this membrane play an important role in biophysical studies. Investigation as to how the insertion of additional phospholipids in one leaflet of a bilayer affects the physical properties of the obtained asymmetric lipid membrane is of recent practical interest. In this work a coarse-grained molecular dynamics simulation was carried out in order to compute the pressure tensor, the lateral pressure, the surface tension and the first moment of lateral pressure in each leaflet of such a bilayer. Our simulations indicate that adding more phospholipids into one monolayer results in... 

    Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators

    , Article Microsystem Technologies ; Volume 12, Issue 12 , 2006 , Pages 1153-1161 ; 09467076 (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2006
    Abstract
    In this paper, the influence of the van der Waals force on two main parameters describing an instability point of cantilever type nanomechanical switches, which are the pull-in voltage and deflection are investigated by using a distributed parameter model. The fringing field effect is also taken into account. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The detachment length and the minimum initial gap of the cantilever type switches are given, which are the basic design parameters for... 

    Alteration of corrosion and nanomechanical properties of pulse electrodeposited Ni/SiC nanocomposite coatings

    , Article Journal of Alloys and Compounds ; Vol. 598 , 2014 , Pages 236-242 ; ISSN: 09258388 Zarghami, V ; Ghorbani, M ; Sharif University of Technology
    Abstract
    Nickel/silicon carbide composite electrodeposits were prepared on a rotating disk electrode (RDE), under pulse current condition. The effect of pulse parameters, current density, SiC content in the electrolyte on the codeposition of SiC were studied. Afterwards, the effect of codeposited SiC amount was investigated on electrochemical behavior and nanomechanical properties of coatings. The coatings were analyzed with Scanning Electron Microscopy (SEM), linear polarization, nanoindentation and Atomic Force Microscopy (AFM). The Ni-SiC electrocomposites, prepared at optimum conditions, exhibited improved nanomechanical properties in comparison to pure nickel electrodeposits. With increasing... 

    Application of elastically supported single-walled carbon nanotubes for sensing arbitrarily attached nano-objects

    , Article Current Applied Physics ; Volume 13, Issue 1 , 2013 , Pages 107-120 ; 15671739 (ISSN) Kiani, K ; Ghaffari, H ; Mehri, B ; Sharif University of Technology
    Abstract
    The potential application of SWCNTs as mass nanosensors is examined for a wide range of boundary conditions. The SWCNT is modeled via nonlocal Rayleigh, Timoshenko, and higher-order beam theories. The added nano-objects are considered as rigid solids, which are attached to the SWCNT. The mass weight and rotary inertial effects of such nanoparticles are appropriately incorporated into the nonlocal equations of motion of each model. The discrete governing equation pertinent to each model is obtained using an effective meshless technique. The key factor in design of a mass nanosensor is to determine the amount of frequency shift due to the added nanoparticles. Through an inclusive parametric... 

    Nanomechanical properties of functionally graded composite coatings: Electrodeposited nickel dispersions containing silicon micro- and nanoparticles

    , Article Materials Chemistry and Physics ; Volume 121, Issue 3 , June , 2010 , Pages 497-505 ; 02540584 (ISSN) Sohrabi, A ; Dolati, A ; Ghorbani, M ; Monfared, A ; Stroeve, P ; Sharif University of Technology
    2010
    Abstract
    Functionally graded composite coatings constitute a class of materials which are mostly used for mechanical and tribological applications. Among these materials, nickel metal deposits with incorporation of SiC particles have excellent mechanical properties due to nickel metal and good tribological properties due to the SiC particles. In this work, nickel coatings containing different sizes of SiC particles, nanoparticles and microparticles (10 nm to 5 μm), were electrodeposited from an additive-free sulfate bath containing nickel ions and SiC particles. The material properties of the coatings were compared to nickel coatings containing microparticles (5 μm). The effect of current density,... 

    Introducing structural approximation method for modeling nanostructures

    , Article Journal of Computational and Theoretical Nanoscience ; Volume 7, Issue 2 , February , 2010 , Pages 423-428 ; 15461955 (ISSN) Momeni, K ; Alasty, A ; Sharif University of Technology
    2010
    Abstract
    In this work a new method for analyzing nanostructured materials has been proposed to accelerate the simulations for solid crystalline materials. The proposed Structural Approximation Method (SAM) is based on Molecular Dynamics (MD) and the accuracy of the results can also be improved in a systematic manner by sacrificing the simulation speed. In this method a virtual material is used instead of the real one, which has less number of atoms and therefore fewer degrees of freedom, compared to the real material. The number of differential equations that must be integrated in order to specify the state of the system will decrease significantly, and the simulation speed increases. To generalize... 

    A Coupling Atomistic-continuum Approach for Modeling Dislocation in Plastic Behavior of Nano-structures

    , M.Sc. Thesis Sharif University of Technology Omrani Pournava, Amir Mohsen (Author) ; Khoei, Amir Reza (Supervisor) ; Jahanshahi, Mohsan (Co-Advisor)
    Abstract
    In this study, a novel multi-scale hierarchical method has been employed to explore the role of edge dislocation on Nano-plates with hexagonal atomic structure in large deformation. multiscale hierarchical atomistic/molecular dynamics (MD) finite element (FE) coupling methods are proposed to demonstrate the impact of dislocation on mechanical properties of Magnesium in large deformation. The atomic nonlinear elastic parameters are attained via computing first-order derivation of stress with respect to strain of Representative Volume Element (RVE). To associate between atomistic and continuum level, the mechanical characteristics are captured in the atomistic scale and transferred to the... 

    Hierarchical Multi-Scale Modeling of Large Plastic Deformation with Application in Powder Compaction

    , Ph.D. Dissertation Sharif University of Technology Rezaei Sameti, Amir (Author) ; Khoei, Amir Reza (Supervisor)
    Abstract
    The hierarchical multi-scale approach is one of the most powerful techniques that takes the advantage of different scales and succeeds the limitations of each method in a way that the large systems in coarse-scale can be simulated with atomic precision. In this thesis, the hierarchical atomistic-continuum multi-scale method is developed for modeling the phenomena with non-homogenous deformation, large deformation and plastic behavior. In this regard at first, an atomistic-based higher-order continuum model is formulated in the framework of nonlinear finite element method to present the geometrically nonlinear behavior of nano-structures. The efficiency of higher-order Cauchy-Born hypothesis... 

    Fabrication mechanism of nanostructured HA/TNTs biomedical coatings: an improvement in nanomechanical and in vitro biological responses

    , Article Journal of Materials Science: Materials in Medicine ; Volume 27, Issue 10 , 2016 ; 09574530 (ISSN) Ahmadi, S ; Riahi, Z ; Eslami, A ; Sadrnezhaad, S. K ; Sharif University of Technology
    Springer New York LLC  2016
    Abstract
    In this paper, a mechanism for fabrication of nanostructured hydroxyapatite coating on TiO2 nanotubes is presented. Also, the physical, biological, and nanomechanical properties of the anodized Ti6Al4V alloy consisting TiO2 nanotubes, electrodeposited hydroxyapatite, and the hydroxyapatite/TiO2 nanotubes double layer coating on Ti6Al4V alloy implants are compared. Mean cell viability of the samples being 84.63 % for uncoated plate, 91.53 % for electrodeposited hydroxyapatite, and 94.98 % for hydroxyapatite/TiO2 nanotubes coated sample were in the acceptable range. Merely anodized prototype had the highest biocompatibility of 110 % with respect to the control sample. Bonding strength of... 

    Nanomechanics of actin filament: a molecular dynamics simulation

    , Article Cytoskeleton ; Volume 75, Issue 3 , March , 2018 , Pages 118-130 ; 19493584 (ISSN) Shamloo, A ; Mehrafrooz, B ; Sharif University of Technology
    John Wiley and Sons Inc  2018
    Abstract
    Actin is known as the most abundant essentially protein in eukaryotic cells. Actin plays a crucial role in many cellular processes involving mechanical forces such as cell motility, adhesion, muscle contraction, and intracellular transport. However, little is known about the mechanical properties of this protein when subjected to mechanical forces in cellular processes. In this article, a series of large-scale molecular dynamics simulations are carried out to elucidate nanomechanical behavior such as elastic and viscoelastic properties of a single actin filament. Here, we used two individual methods namely, all-atoms and coarse-grained molecular dynamics, to evaluate elastic properties of a... 

    Closed-form solutions of the pull-in instability in nano-cantilevers under electrostatic and intermolecular surface forces

    , Article International Journal of Solids and Structures ; Volume 44, Issue 14-15 , 2007 , Pages 4925-4941 ; 00207683 (ISSN) Ramezani, A ; Alasty, A ; Akbari, J ; Sharif University of Technology
    2007
    Abstract
    In this paper, a distributed parameter model is used to study the pull-in instability of cantilever type nanomechanical switches subjected to intermolecular and electrostatic forces. In modeling of the electrostatic force, the fringing field effect is taken into account. The model is nonlinear due to the inherent nonlinearity of the intermolecular and electrostatic forces. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. Closed-form solutions are obtained by assuming an appropriate shape function for the beam deflection to evaluate the integrals. The pull-in parameters of the switch are computed under... 

    Influence of van der Waals force on the pull-in parameters of cantilever type nanoscale electrostatic actuators

    , Article 8th Biennial ASME Conference on Engineering Systems Design and Analysis, ESDA2006, Torino, 4 July 2006 through 7 July 2006 ; Volume 2006 , 2006 ; 0791837793 (ISBN); 9780791837795 (ISBN) Ramezani, A ; Akbari, J ; Alasty, A ; Sharif University of Technology
    2006
    Abstract
    In this paper, the influence of the van der Waals force on two main parameters describing an instability point of cantilever type nanomechanical switches, which are the pull-in voltage and deflection are investigated by using a distributed parameter beam model. The nonlinear differential equation of the model is transformed into the integral form by using the Green's function of the cantilever beam. The integral equation is solved analytically by assuming an appropriate shape function for the beam deflection. The detachment length and the minimum initial gap of the cantilever type switches are given, which are the basic design parameters for NEMS switches. The pull-in parameters of... 

    Self cleaning TiO2 coating on polycarbonate: Surface treatment, photocatalytic and nanomechanical properties

    , Article Surface and Coatings Technology ; Volume 204, Issue 9-10 , 2010 , Pages 1562-1568 ; 02578972 (ISSN) Yaghoubi, H ; Taghavinia, N ; Keshavarz Alamdari, E ; Sharif University of Technology
    Abstract
    A developed route to form TiO2 self cleaning coatings on polycarbonate substrates is reported. TiO2 coatings on plastics may find widespread application in auto and construction industries if possess desired photocatalytic and mechanical properties. A chemical surface treatment method was used to create hydrophilic groups on the surface. X-ray photoelectron spectroscopy showed the treatment led to the oxidation of surface groups. TiO2 deposition was based on wet coating using an anatase sol of TiO2 nanoparticles of 30 nm size. The sol was synthesized using a sol-gel route. A pre-coat of peroxotitanium complex was employed to improve adhesion and inhibit the substrate degradation. The coating...