Search for: nanomedicine
0.006 seconds
Total 43 records

    Targeted nanomedicines for the treatment of bone disease and regeneration

    , Article Medicinal Research Reviews ; 2020 Ordikhani, F ; Zandi, N ; Mazaheri, M ; Luther, G. A ; Ghovvati, M ; Akbarzadeh, A ; Annabi, N ; Sharif University of Technology
    John Wiley and Sons Inc  2020
    Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical... 

    The nano-based theranostics for respiratory complications of COVID-19

    , Article Drug Development and Industrial Pharmacy ; 2021 ; 03639045 (ISSN) Ghasemzad, M ; Hashemian, S. M. R ; Memarnejadian, A ; Akbarzadeh, I ; Hossein Khannazer, N ; Vosough, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    High morbidity and mortality caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has made coronavirus disease 2019 (COVID-19) the leading challenge for health experts all over the world. Currently, there is no specific treatment for COVID-19; however, thanks to worldwide intense attempts, novel vaccines such as mRNA-1273 (Moderna TX, Inc.) and BNT162b2 (Biontech/Pfizer) were developed very fast and FDA approved them for emergency use. Nanomedicine-based drug delivery can be an advanced therapeutic strategy to deal with clinical complications of COVID-19. Given the fact that SARS-CoV-2 typically affects the respiratory tract, application of inhalable nanoparticles (NPs)... 

    In vitro biocompatibility evaluations of hyperbranched polyglycerol hybrid nanostructure as a candidate for nanomedicine applications

    , Article Journal of Materials Science: Materials in Medicine ; Vol. 25, issue. 2 , 2014 , pp. 499-506 ; ISSN: 09574530 Zarrabi, A ; Shokrgozar, M. A ; Vossoughi, M ; Farokhi, M ; Sharif University of Technology
    In the present study, a detailed biocompatibility testing of a novel class of hybrid nanostructure based on hyperbranched polyglycerol and β-cyclodextrin is conducted. This highly water soluble nanostructure with size of less than 10 nm, polydispersity of less than 1.3, chemical tenability and highly branched architecture with the control over branching structure could be potentially used as a carrier in drug delivery systems. To this end, extensive studies in vitro and in vivo conditions have to be demonstrated. The in vitro studies include in vitro cytotoxicity tests; MTT and Neutral Red assay as an indicator of mitochondrial and lysosomal function, and blood biocompatibility tests such as... 

    Synthesis and Evaluation of Supramolecular Nanostrutures of Cyclodextrin/Polyglycerol with Controlled Drug Delivery Applications

    , Ph.D. Dissertation Sharif University of Technology Zarrabi, Ali (Author) ; Vossoughi, Manouchehr (Supervisor) ; Adeli, Mohsen (Supervisor) ; Shokrgozar, Mohammad Ali (Supervisor)
    Today, human is facing and struggling with one of the most deadly disease, Cancer. Accordingly, several research studies are aimed to develop new anticancer drugs. Among the prescribed drugs are Paclitaxel. Unfortunately, despite the anticancer activity, paclitaxel has very low water solubility. To solve this problem several alternatives have been proposed by researchers, e.g. using co-solvents of ethanol:Cremophor El®, as is the case in commercial drug, Taxol®. Unfortunately, these co-solvents have some dangerous and sometimes mortal side effects. To reduce its side effects, researchers have proposed using cyclodextrin as a carrier for paclitaxel on the basis that cyclodextrin has a... 

    Synthesis of Graphene Oxide Coating with Hydrophilic Polymers as Paclitaxel Anticancer Drug Delivery Systems

    , M.Sc. Thesis Sharif University of Technology Jokar, Safura (Author) ; Adeli, Mohsen (Supervisor) ; Poujavadi, Ali (Co-Advisor)
    Nowadays, there is no perfect drug delivery for cancer therapy; also the healthy tissues can be damaged more than tumor tissues. To resolve this problem, the new drug delivery system based on nanostructured materials is useful. Graphene oxide (GO) is one of the most important graphene derivatives and a potential candidate for drug delivery system. It has high specific surface area so that it can load and deliver the drug in a good manner. Hydrophobicity of graphene restricts its application in nanomedicine. In order to improve its solubility in water, graphene should be modified by hydrophilic polymers. Therefore, in this study, in order to activate the graphene surface and increase its... 

    Targeted nanomedicines for the treatment of bone disease and regeneration

    , Article Medicinal Research Reviews ; Volume 41, Issue 3 , 2021 , Pages 1221-1254 ; 01986325 (ISSN) Ordikhani, F ; Zandi, N ; Mazaheri, M ; Luther, G. A ; Ghovvati, M ; Akbarzadeh, A ; Annabi, N ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical... 

    Carbosilane dendrimers: Drug and gene delivery applications

    , Article Journal of Drug Delivery Science and Technology ; Volume 59 , 2020 Rabiee, N ; Ahmadvand, S ; Ahmadi, S ; Fatahi, Y ; Dinarvand, R ; Bagherzadeh, M ; Rabiee, M ; Tahriri, M ; Tayebi, L ; Hamblin, M. R ; Sharif University of Technology
    Editions de Sante  2020
    Carbosilane dendrimers are a particular type of dendrimer structure that has been used as delivery vehicles for drugs and nucleic acids. They have a defined structure according to their generation number, and their terminal groups can be rendered cationic or anionic. The cationic charges can address the limitation of electrostatic repulsion between the negatively charged phosphate groups of nucleic acids and negatively charged cell membranes. Specific drugs can be loaded into the central part of the dendrimer or attached at the exterior, and the overall positive charge may improve the efficacy of anti-inflammatory drugs. One promising feature of dendrimers is their non-toxicity both in vitro... 

    Polyrotaxane capped quantum dots as new candidates for cancer diagnosis and therapy

    , Article Journal of Nanostructured Polymers and Nanocomposites ; Volume 7, Issue 1 , 2011 , Pages 18-31 ; 17904439 (ISSN) Sarabi, R. S ; Sadeghi, E ; Hosseinkhani, H ; Mahmoudi, M ; Kalantari, M ; Adeli, M ; Sharif University of Technology
    Molecular self-assembly of cadmium selenide quantum dots-end-capped polyrotaxane hybrid nanostructures (PRCdSe QDs) was led to a new type of core-shell hybrid nanomaterials consisting of cadmium selenide quantum dot (CdSe QDs) core and polyrotaxane shell (PR@QDs). Structure of PR@QDs was characterized using various techniques. It has been observed that the size of PR@QDs was between 20-25 nm in which diameter of core and thickness of shell were between 15-20 and 2-3 nm, respectively. Short-term in vitro cytotoxicity tests, using MTT (3-(4,5- dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay, were conducted on mouse tissue connective fibroblast adhesive cell line (L929) in order to... 

    Particles in coronary circulation: A review on modelling for drug carrier design

    , Article Materials and Design ; Volume 216 , 2022 ; 02641275 (ISSN) Forouzandehmehr, M ; Ghoytasi, I ; Shamloo, A ; Ghosi, S ; Sharif University of Technology
    Elsevier Ltd  2022
    Atherosclerotic plaques and thrombosis are chronic inflammatory complications and the main manifestations of cardiovascular diseases (CVD), the leading cause of death globally. Achieving non/minimal-invasive therapeutic means for these implications in the coronary network is vital and has become an interdisciplinary concern. Accordingly, smart drug delivery systems, specifically based on micro- and nanoparticles, as a promising method to offer non/minimal-invasive therapeutic mechanisms are under active research. Notably, computational models enable us to study, design, and predict treatment strategies based on smart drug delivery systems with less time and cost compared with conventional... 

    Mechanism Investigation of Metallic Nanoparticles Interaction with Biological Molecules using Molecular Dynamic Simulation

    , M.Sc. Thesis Sharif University of Technology Soltani, Nima (Author) ; Gholami, Mohammad Reza (Supervisor)
    Amyloid β (Aβ) peptide is believed to be associated with the progression of Alzheimer's disease. One of the main obstacles in developments of therapeutic agents to combat progression of Alzheimer's disease, is the presence of the blood–brain barrier (BBB), which prevents the penetration of the majority of drugs. However, nanoscale objects are able to cross the BBB at low concentrations. Therefore, it is worthwhile to study the interactions of these peptides at the interface of nanomaterials. In this work we have employed molecular dynamics, and weighted histogram analysis methods in order to study the dynamic behavior and affinity of Aβ25-35 peptide on metallic surfaces of different... 

    Carbon nanotubes in cancer therapy: A more precise look at the role of carbon nanotube-polymer interactions

    , Article Chemical Society Reviews ; Volume 42, Issue 12 , Feb , 2013 , Pages 5231-5256 ; 03060012 (ISSN) Adeli, M ; Soleyman, R ; Beiranvand, Z ; Madani, F ; Sharif University of Technology
    Despite the great potential of carbon nanotubes (CNTs) in various areas of biomedicine, concerns regarding their carcinogenicity, inefficient dispersion in aqueous solutions and biological activity in vivo still remain. One important and feasible route to overcome these barriers is modification of CNTs with polymers, which are widely studied and play a vital role in biological and biomedical fields, especially in drug delivery. This comprehensive review focuses on the achievements of our and other groups in currently used methods to functionalize the surface of CNTs with polymers to produce anticancer drug delivery systems. We have intensively studied covalent and noncovalent interactions... 

    Nanomedicine applications in orthopedic medicine: State of the art

    , Article International Journal of Nanomedicine ; Volume 10 , 2015 , Pages 6039-6054 ; 11769114 (ISSN) Mazaheri, M ; Eslahi, N ; Ordikhani, F ; Tamjid, E ; Simchi, A ; Sharif University of Technology
    Dove Medical Press Ltd  2015
    The technological and clinical need for orthopedic replacement materials has led to significant advances in the field of nanomedicine, which embraces the breadth of nanotechnology from pharmacological agents and surface modification through to regulation and toxicology. A variety of nanostructures with unique chemical, physical, and biological properties have been engineered to improve the functionality and reliability of implantable medical devices. However, mimicking living bone tissue is still a challenge. The scope of this review is to highlight the most recent accomplishments and trends in designing nanomaterials and their applications in orthopedics with an outline on future directions... 

    Paclitaxel/β-CD-g-PG inclusion complex: An insight into complexation thermodynamics and guest solubility

    , Article Journal of Molecular Liquids ; Volume 208 , August , 2015 , Pages 145-150 ; 01677322 (ISSN) Zarrabi, A ; Vossoughi, M ; Sharif University of Technology
    Elsevier  2015
    Paclitaxel as one of the most effective anticancer drugs has low aqueous solubility. This inevitably reveals its commercial formulation in Cremophor EL®/ethanol mixture. However, this formulation leads to several severe side effects such as hypersensitivity reactions, neurotoxicity and nephrotoxicity. Inclusion complexation has been introduced as a practical approach in increasing paclitaxel aqueous solubility. To this end, a hybrid nanocarrier system based on hyperbranched polyglycerol and β-cyclodextrin is designed with key components uniquely structured at nanoscale and evaluated according to medical requirements. Paclitaxel is included in the hydrophobic cavity of cyclodextrin as guest... 

    Membrane interactions control residue fluctuations of outer membrane porins

    , Article Physical Review E - Statistical, Nonlinear, and Soft Matter Physics ; Volume 81, Issue 5 , May , 2010 ; 15393755 (ISSN) Besya, A. B ; Mobasheri, H ; Ejtehadi, M. R ; Sharif University of Technology
    Bacterial outer membrane porins (Omp) that have robust β -barrel structures, show potential applications for nanomedicine devices in synthetic membranes and single molecule detection biosensors. Here, we explore the conformational dynamics of a set of 22 outer membrane porins, classified into five major groups: general porins, specific porins, transport Omps, poreless Omps and composed pores. Normal mode analysis, based on mechanical vibration theory and elastic network model, is performed to study the fluctuations of residues of aforementioned porins around their equilibrium positions. We find that a simple modification in this model considering weak interaction between protein and... 

    Histidine-enhanced gene delivery systems: The state of the art

    , Article Journal of Gene Medicine ; Volume 24, Issue 5 , 2022 ; 1099498X (ISSN) Hooshmand, S. E ; Jahanpeimay Sabet, M ; Hasanzadeh, A ; Kamrani Mousavi, S. M ; Haeri Moghaddam, N ; Hooshmand, S. A ; Rabiee, N ; Liu, Y ; Hamblin, M. R ; Karimi, M ; Sharif University of Technology
    John Wiley and Sons Inc  2022
    Gene therapy has emerged as a promising tool for treating different intractable diseases, particularly cancer or even viral diseases such as COVID-19 (coronavirus disease 2019). In this context, various non-viral gene carriers are being explored to transfer DNA or RNA sequences into target cells. Here, we review the applications of the naturally occurring amino acid histidine in the delivery of nucleic acids into cells. The biocompatibility of histidine-enhanced gene delivery systems has encouraged their wider use in gene therapy. Histidine-based gene carriers can involve the modification of peptides, dendrimers, lipids or nanocomposites. Several linear polymers, such as polyethylenimine,... 

    Graphene: Promises, facts, opportunities, and challenges in nanomedicine

    , Article Chemical Reviews ; Volume 113, Issue 5 , 2013 , Pages 3407-3424 ; 00092665 (ISSN) Mao, H. Y ; Laurent, S ; Chen, W ; Akhavan, O ; Imani, M ; Ashkarran, A. A ; Mahmoudi, M ; Sharif University of Technology
    Graphene, a two-dimensional (2D) sheet of sp2-hybridized carbon atoms packed into a honeycomb lattice, has led to an explosion of interest in the field of materials science, physics, chemistry, and biotechnology since the few-layers graphene (FLG) flakes were isolated from graphite in 2004. For an extended search, derivatives of nanomedicine such as biosensing, biomedical, antibacterial, diagnosis, cancer and photothermal therapy, drug delivery, stem cell, tissue engineering, imaging, protein interaction, DNA, RNA, toxicity, and so on were also added. Since carbon nanotubes are normally described as rolled-up cylinders of graphene sheets and the controllable synthesis of nanotubes is well... 

    The effect of protein corona on doxorubicin release from the magnetic mesoporous silica nanoparticles with polyethylene glycol coating

    , Article Journal of Nanoparticle Research ; Volume 17, Issue 4 , April , 2015 ; 13880764 (ISSN) Pourjavadi, A ; Tehrani, Z. M ; Mahmoudi, N ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    In the present work, biocompatible superparamagnetic iron oxide nanoparticles coated by mesoporous silica were used as drug nanocarriers for doxorubicin (Dox; an anticancer drug) delivery. In biological media, the interaction of protein corona layer with the surface of nanoparticles is inevitable. For this reason, we studied the effect of protein corona on drug release from magnetic mesoporous silica nanoparticles (MMSNs) in human plasma medium. Besides, we used hydrophilic and biocompatible polymer, polyethylene glycol (PEG), to decrease protein corona effects. The results showed the increased Dox release from PEGylated MMSNs compared with bare MMSNs. This result indicated that the coating... 

    Synthesis, properties and biomedical applications of carbon-based quantum dots: an updated review

    , Article Biomedicine and Pharmacotherapy ; Volume 87 , 2017 , Pages 209-222 ; 07533322 (ISSN) Namdari, P ; Negahdari, B ; Eatemadi, A ; Sharif University of Technology
    Elsevier Masson SAS  2017
    Carbon-based quantum dots (CQDs) are a newly developed class of carbon nano-materials that have attracted much interest and attention as promising competitors to already available semiconductor quantum dots owing to their un-comparable and unique properties. In addition, controllability of CQDs unique physiochemical properties is as a result of their surface passivation and functionalization. This is an update article (between 2013 and 2016) on the recent progress, characteristics and synthesis methods of CQDs and different advantages in varieties of applications. © 2017 Elsevier Masson SAS  

    Bacterial components as naturally inspired nano-carriers for drug/gene delivery and immunization: set the bugs to work?

    , Article Biotechnology Advances ; Volume 36, Issue 4 , 2018 , Pages 968-985 ; 07349750 (ISSN) Farjadian, F ; Moghoofei, M ; Mirkiani, S ; Ghasemi, A ; Rabiee, N ; Hadifar, S ; Beyzavi, A ; Karimi, M ; Hamblin, M. R ; Sharif University of Technology
    Elsevier Inc  2018
    Drug delivery is a rapidly growing area of research motivated by the nanotechnology revolution, the ideal of personalized medicine, and the desire to reduce the side effects of toxic anti-cancer drugs. Amongst a bewildering array of different nanostructures and nanocarriers, those examples that are fundamentally bio-inspired and derived from natural sources are particularly preferred. Delivery of vaccines is also an active area of research in this field. Bacterial cells and their components that have been used for drug delivery, include the crystalline cell-surface layer known as “S-layer” bacterial ghosts, bacterial outer membrane vesicles, and bacterial products or derivatives (e.g.... 

    Carbon nanotubes-graft-polyglycerol: biocompatible hybrid materials for nanomedicine

    , Article Polymer ; Volume 50, Issue 15 , 2009 , Pages 3528-3536 ; 00323861 (ISSN) Adeli, M ; Mirab, N ; Shafiee Alavidjeh, M ; Sobhani, Z ; Atyabi, F ; Sharif University of Technology
    New biocompatible and water soluble hybrid materials containing multi-wall carbon nanotubes (MWCNTs) as core and hyperbranched polyglycerol (PG) as shell were synthesized successfully. In this work, pristine MWCNTs were opened and functionalized through treatment with acid and polyglycerol was covalently grafted onto their surface by the "grafting from" approach based on in-situ ring-opening polymerization of glycidol. Some short-term In vitro cytotoxicity and hemocompatibility tests were conducted on HT1080 cell line (human Fibrosarcoma), because this epithelial cell line can be one of the first route of entry of the exogenous materials to the vascular system and therefore subsequent...