Loading...
Search for: nanoparticle-clusters
0.004 seconds

    Preparation and characterization of UHMWPE/graphene nanocomposites using bi-supported ziegler-natta polymerization

    , Article International Journal of Polymeric Materials and Polymeric Biomaterials ; Vol. 63, issue. 16 , 2014 , p. 815-819 Shafiee, M ; Ramazani, S. A ; Sharif University of Technology
    Abstract
    Ultrahigh-molecular-weight polyethylene (UHMWPE)/graphene nanocomposites with molecular weights as high as 3 × 106 g/mol were prepared via in situ polymerization using a bi-supported Ziegler-Natta catalytic system. Effects of [Al]/[Ti] molar ratio, temperature, monomer pressure, and polymerization time on productivity of the catalyst have been investigated. Increasing [Al]/[Ti] molar ratio from 128 to 320, increased productivity from 1667 g PE/mmol Ti.h to maximum value which was 2420 g PE/mmol Ti.h. Further [Al]/[Ti] ratio decreased the productivity. Reaction temperature effect investigation reveals that the optimal activity was obtained at 60°C. the polymerization productivity increases... 

    Optimization of uhmwpe/graphene nanocomposite processing using ziegler-natta catalytic system viaresponse surface methodology

    , Article Polymer - Plastics Technology and Engineering ; Vol. 53, Issue. 9 , June , 2014 , pp. 969-974 ; ISSN: 03602559 Shafiee, M ; Ramazani, S. A. A ; Sharif University of Technology
    Abstract
    Optimization of operational conditions for the preparation of Ultrahigh-molecular-weight polyethylene (UHMWPE)/Graphene nanocomposites with Ziegler-Natta catalyst was carried out via response surface methodology (RSM). This study deals with the optimization of process variables to optimize the productivity and molecular weight. A three-factor, three-level Box-Behnken design with temperature (X1), monomer pressure (X2), and [Al]/[Ti] molar ratio (X3) as the independent variables were selected for the study. The dependent variables were productivity and molecular weights of the final nanocomposites. It was developed by using the three parameters at three levels including 50, 60, and 70°C for... 

    Production and characterization of UHMWPE/fumed silica nanocomposites

    , Article Polymer Composites ; Volume 33, Issue 10 , 2012 , Pages 1858-1864 ; 02728397 (ISSN) Ramazani, A ; Saremi, M. G ; Amoli, B. N ; Izadi, H ; Sharif University of Technology
    Wiley  2012
    Abstract
    Ultrahigh-molecular-weight polyethylene (UHMWPE)/fumed silica nanocomposites were prepared via in situ polymerization using a bi-supported Ziegler-Natta catalytic system. Nanocomposites with different nanoparticle weight fractions were produced in order to investigate the effect of fumed silica on thermal and mechanical properties of UHMWPE/fumed silica nanocomposites. The viscosity average molecular weight (M) of all samples including pure UHMWPE as the reference sample and nanocomposites were measured. Scanning electron microscope (SEM) images showed the homogenous dispersion of nanoparticles throughout the UHMWPE matrix while no nanoparticle cluster has been formed. Crystallization...