Loading...
Search for: nanoparticles-ink
0.005 seconds

    Preparation of Colloidal Chalcopyrite Nanoparticles Aimed for Device-Quality Thin Films Used in Solar Cell Applications

    , M.Sc. Thesis Sharif University of Technology Khosroshahi, Rouhollah (Author) ; Taghavinia, Nima (Supervisor) ; Bagherzadeh, Mojtaba (Supervisor)
    Abstract
    In this research, the technology of fabrication and deposition of nanoparticle inks from chalcogenide compounds and then use of them in the fabrication of CuInGaS2 and Perovskite thin-film solar cells have been considered. In the first step, the synthesis of CuInGaS2 family compounds with variable In / Ga ratio and also the change of the stoichiometric ratio of Cu component using oleylamine solvent is investigated. In addition to these compounds, the synthesis of CuSnS, CuBaSnS, and CuZnSnS nanoparticles is also investigated. The synthesized nanoparticles were analyzed by XRD, DLS, UV-Vis, ICP, PL, SEM, EDX, and TEM. Then, the stability of the ink made of CuInGaS2 nanoparticles in different... 

    Low-temperature solution-based processing to 7.24% efficient superstrate CuInS2 solar cells

    , Article Solar Energy ; Volume 157 , 2017 , Pages 581-586 ; 0038092X (ISSN) Cheshme Khavar, A.H ; Mahjoub, A. R ; Taghavinia, N ; Sharif University of Technology
    Elsevier Ltd  2017
    Abstract
    The fabrication of high performance, solution-processed CIGS family solar cells is based on high-temperature crystallization processes in chalcogen-containing atmosphere and/or using dangerous solvents like hydrazine. The non-hydrazine sulfurization- and selenization-free reports typically suffer from poor grain structures. We report a facile strategy to overcome grain growth limitations at very low temperature processing (250 °C). Selenium free Superstrate configuration CuInS2 (CIS) solar cells are fabricated using a nanocrystals ink which avoiding from high temperature selenization or/and sulfurization is targeted. We investigated the effect of intentional M doping (M = Sb, Zn, Cd and Sn)... 

    Engineering of CIGS nanoparticle inks for colloidal stability, uniform film formation and application as HTL for perovskite solar cells

    , Article Journal of Industrial and Engineering Chemistry ; 2021 ; 1226086X (ISSN) Khosroshahi, R ; Tehrani, N. A ; Forouzandeh, M ; Behrouznejad, F ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2021
    Abstract
    In this work, synthesis of CuIn0.75Ga0.25S2 (CIGS) nanoparticles, the formation of stable dispersion, deposition of high-quality films and, fabrication of thin-film Perovskite solar cells are reported. The stability of nanoparticle ink is crucial in the formation of device-quality films. The chalcogenide-based materials are widely used in thin-film solar cells; in particular, Cu(In,Ga)S2 are used as an absorber and hole transporting layer. In the present study, the nanoparticles of about 20 nm size and bandgap of 1.5 eV are synthesized using a heat-up method. A variety of solvents are used as dispersing media and the stability of the inks is evaluated by precise optical monitoring. We... 

    Engineering of CIGS nanoparticle inks for colloidal stability, uniform film formation and application as HTL for perovskite solar cells

    , Article Journal of Industrial and Engineering Chemistry ; Volume 106 , 2022 , Pages 253-261 ; 1226086X (ISSN) Khosroshahi, R ; Tehrani, N. A ; Forouzandeh, M ; Behrouznejad, F ; Taghavinia, N ; Bagherzadeh, M ; Sharif University of Technology
    Korean Society of Industrial Engineering Chemistry  2022
    Abstract
    In this work, synthesis of CuIn0.75Ga0.25S2 (CIGS) nanoparticles, the formation of stable dispersion, deposition of high-quality films and, fabrication of thin-film Perovskite solar cells are reported. The stability of nanoparticle ink is crucial in the formation of device-quality films. The chalcogenide-based materials are widely used in thin-film solar cells; in particular, Cu(In,Ga)S2 are used as an absorber and hole transporting layer. In the present study, the nanoparticles of about 20 nm size and bandgap of 1.5 eV are synthesized using a heat-up method. A variety of solvents are used as dispersing media and the stability of the inks is evaluated by precise optical monitoring. We...