Loading...
Search for: nanopharmaceutics
0.004 seconds

    Graphene oxide functionalized with oxygen-rich polymers as a pH-sensitive carrier for co-delivery of hydrophobic and hydrophilic drugs

    , Article Journal of Drug Delivery Science and Technology ; Volume 56 , 2020 Pourjavadi, A ; Asgari, S ; Hosseini, S. H ; Sharif University of Technology
    Editions de Sante  2020
    Abstract
    In this work, a novel carrier based-on modified graphene oxide was designed for co-delivery of hydrophobic and hydrophilic anticancer drugs (curcumin (Cur) and doxorubicin (DOX) as the model of drugs). The hydroxyl groups at the edges of graphene oxide (GO) sheets were used as the initiation sites for growing poly(epichlorohydrin) (PCH) chains. Then, hyperbranched polyglycerol (HPG) was grafted on the hydroxyl end groups of PCH (PCH-g-HPG). Pendant chlorines in the main chain of GO-PCH-g-HPG were replaced with hydrazine. The modification of GO sheets with oxygen-rich polymers increased water solubility of graphene oxide. Doxorubicin was loaded onto the nanocarrier by covalent bonding with... 

    Targeted nanomedicines for the treatment of bone disease and regeneration

    , Article Medicinal Research Reviews ; Volume 41, Issue 3 , 2021 , Pages 1221-1254 ; 01986325 (ISSN) Ordikhani, F ; Zandi, N ; Mazaheri, M ; Luther, G. A ; Ghovvati, M ; Akbarzadeh, A ; Annabi, N ; Sharif University of Technology
    John Wiley and Sons Inc  2021
    Abstract
    Targeted delivery by either passive or active targeting of therapeutics to the bone is an attractive treatment for various bone related diseases such as osteoporosis, osteosarcoma, multiple myeloma, and metastatic bone tumors. Engineering novel drug delivery carriers can increase therapeutic efficacy and minimize the risk of side effects. Developmnet of nanocarrier delivery systems is an interesting field of ongoing studies with opportunities to provide more effective therapies. In addition, preclinical nanomedicine research can open new opportunities for preclinical bone-targeted drug delivery; nevertheless, further research is needed to progress these therapies towards clinical... 

    Smart nanostructures for cargo delivery: uncaging and activating by light

    , Article Journal of the American Chemical Society ; Volume 139, Issue 13 , 2017 , Pages 4584-4610 ; 00027863 (ISSN) Karimi, M ; Sahandi Zangabad, P ; Baghaee Ravari, S ; Ghazadeh, M ; Mirshekari, H ; Hamblin, M. R ; Sharif University of Technology
    Abstract
    Nanotechnology has begun to play a remarkable role in various fields of science and technology. In biomedical applications, nanoparticles have opened new horizons, especially for biosensing, targeted delivery of therapeutics, and so forth. Among drug delivery systems (DDSs), smart nanocarriers that respond to specific stimuli in their environment represent a growing field. Nanoplatforms that can be activated by an external application of light can be used for a wide variety of photoactivated therapies, especially light-triggered DDSs, relying on photoisomerization, photo-cross-linking/un-cross-linking, photoreduction, and so forth. In addition, light activation has potential in photodynamic... 

    The role of polyethylene glycol size in chemical spectra, cytotoxicity, and release of pegylated nanoliposomal cisplatin

    , Article Assay and Drug Development Technologies ; Volume 17, Issue 5 , 2019 , Pages 231-239 ; 1540658X (ISSN) Shirzad, M ; Jamehbozorgi, S ; Akbarzadeh, I ; Aghabozorg, H. R ; Amini, A ; Sharif University of Technology
    Mary Ann Liebert Inc  2019
    Abstract
    This study aimed to synthesize methoxy polyethylene glycol propionaldehyde (mPEG20,000-ALD) for the preparation of PEGylated nanoliposomal cisplatin. Nanocarriers such as liposomes are developed for a wide range of drug delivery systems. PEG with high molecular weight (Mw) is used to coat the liposomes. In this study, simulated Fourier transform infrared (FTIR) spectra of mPEG-ALD were obtained using density functional theory (DFT) calculations and then compared with actual FTIR spectrum of mPEG20,000-ALD (Mw = 20 kDa). We found that the intensity of C = O stretching vibration at 1,700 cm-1 related to the carbonyl functional group of mPEG20,000-ALD was very weak. The results of DFT... 

    Preparation and biological evaluation of radiolabeled-folate embedded superparamagnetic nanoparticles in wild-type rats

    , Article Journal of Radioanalytical and Nuclear Chemistry ; Volume 287, Issue 1 , January , 2011 , Pages 119-127 ; 02365731 (ISSN) Jalilian, A. R ; Hosseini Salekdeh, S. L ; Mahmoudi, M ; Yousefnia, H ; Majdabadi, A ; Pouladian, M ; Sharif University of Technology
    2011
    Abstract
    In this study, superparamagnetic iron oxide nanoparticles (SPION) embedded by folic acid (SPION-folate) were prepared by a modified co-precipitation method. The structure, size, morphology, magnetic property and relaxivity of the SPION-folate were characterized systematically by means of XRD, VSM, HRSEM and TEM and the interaction between folate and iron oxide (Fe3O 4) was characterized by FT-IR. The particle size was shown to be ≈5-10 nm. To ensure biocompatibility, the interaction of these SPION with mouse connective tissue cells (adhesive) was investigated using an MTT assay. Consequently, gallium-67 labeled nanoparticles ([67Ga]-SPION-folate) were prepared using 67Ga with a high labeling... 

    Antibiotic-loaded chitosan–Laponite films for local drug delivery by titanium implants: cell proliferation and drug release studies

    , Article Journal of Materials Science: Materials in Medicine ; Volume 26, Issue 12 , December , 2015 ; 09574530 (ISSN) Ordikhani, F ; Dehghani, M ; Simchi, A ; Sharif University of Technology
    Kluwer Academic Publishers  2015
    Abstract
    Abstract: In this study, chitosan–Laponite nanocomposite coatings with bone regenerative potential and controlled drug-release capacity are prepared by electrophoretic deposition technique. The controlled release of a glycopeptide drug, i.e. vancomycin, is attained by the intercalation of the polymer and drug macromolecules into silicate galleries. Fourier-transform infrared spectrometry reveals electrostatic interactions between the charged structure of clay and the amine and hydroxyl groups of chitosan and vancomycin, leading to a complex positively-charged system with high electrophoretic mobility. By applying electric field the charged particles are deposited on the surface of titanium... 

    A comparative study of wound dressings loaded with silver sulfadiazine and silver nanoparticles: In vitro and in vivo evaluation

    , Article International Journal of Pharmaceutics ; Volume 564 , 2019 , Pages 350-358 ; 03785173 (ISSN) Mohseni, M ; Shamloo, A ; Aghababaie, Z ; Afjoul, H ; Abdi, S ; Moravvej, H ; Vossoughi, M ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    In the current study, two series of antimicrobial dressings conjugated with silver sulfadiazine (SSD) and silver nanoparticles (AgNPs) were developed and evaluated for chronic wound healing. Highly porous polycaprolactone (PCL)/polyvinyl alcohol (PVA) nanofibers were loaded with different concentrations of SSD or AgNPs and compared comprehensively in vitro and in vivo. SSD and AgNPs indicated a strong and equal antimicrobial activity against S. aureus. However, SSD had more toxicity against fibroblast cells over one week in vitro culture. An in vivo model of wound healing on male Wistar rats was developed with a full thickness wound. All the wound dressings indicated enough flexibility and...