Loading...
Search for: nanoporous-substrate
0.007 seconds

    Fabrication of HAp-8YSZ composite layer on Ti/TiO2 nanoporous substrate by EPD/MAO method

    , Article Materials Letters ; Volume 65, Issue 23-24 , 2011 , Pages 3421-3423 ; 0167577X (ISSN) Hekmatfar, M ; Moshayedi, Sh ; Ghaffari, S. A ; Rezaei, H. R ; Golestani Fard, F ; Sharif University of Technology
    Abstract
    Zirconia/Hydroxyapatite composites containing 20-50 wt.% 8YSZ were prepared on Ti/TiO2 substrates by electrophoretic deposition (EPD)/micro-arc oxidation (MAO) process. Titania, as an inner layer, was grown on the Ti plates using MAO treatment in order to form a strong join between substrate and HAp. These composites were produced by EPD in ethanol containing ZrO2/HAp particles at 50, 100 and 150 V in 1 min. Asprepared samples were sintered at 900, 1100 and 1300 °C. HAp, β-TCP, CaZrO3 phases were identified using X-ray diffractometry analysis (XRD). Scanning electron microscopy (SEM) utilized to study the surface morphology indicated a crack free microstructure at 1300 °C  

    2-D microflow generation on superhydrophilic nanoporous substrates using epoxy spots for pool boiling enhancement

    , Article International Communications in Heat and Mass Transfer ; Volume 113 , April , 2020 Najafpour, S ; Moosavi, A ; Rad, S. V ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    We conduct an experimental investigation on the pool boiling enhancement in DI water on nanoporous surfaces. The surfaces are modified by anodic oxidation, and cavities with 2 mm diameter and pitches between 2.5 and 5 mm applied on them using EDM method filled with a two-part epoxy with low thermal conductivity properties. The capillary wicking action of the superhydrophilic nanoporous oxide layer enhances the rewetting and spreading of the liquid to dry-spots during boiling. The epoxy disks remain wet and prevent merging bubbles during the pool boiling experiment and a 2-D microflow is induced toward dried regions with synergic effects of nanoporous surface absorption, create a considerable...