Loading...
Search for: nanoscale-capacitors
0.004 seconds

    Oxidation effects on transport characteristics of nanoscale MOS capacitors with an embedded layer of silicon nanocrystals obtained by low energy ion implantation

    , Article Materials Science and Engineering B: Solid-State Materials for Advanced Technology ; Volume 124-125, Issue SUPPL , 2005 , Pages 494-498 ; 09215107 (ISSN) Grisolia, J ; Shalchian, M ; Benassayag, G ; Coffin, H ; Bonafos, C ; Schamm, S ; Atarodi, S. M ; Claverie, A ; Sharif University of Technology
    2005
    Abstract
    In this paper, we have studied the effect of annealing under slightly oxidizing ambient (N2 + O2) on the structural and electrical characteristics of a limited number of silicon nanoparticles embedded in an ultra-thin SiO2 layer. These nanoparticles were synthesized by ultra-low energy (1 keV) ion implantation and annealing. Material characterization techniques including transmission electron microscopy (TEM), Fresnel imaging and spatially resolved electron energy loss spectroscopy (EELS) have been used to evaluate the effects of oxidation on structural characteristics of nanocrystal layer. Electrical transport characteristics have been measured on less than one hundred nanoparticles by... 

    Evolution of quantum electronic features with the size of silicon nanoparticles embedded in a sio2 layer obtained by low energy ion implantation

    , Article 11th International Autumn Meeting on Gettering and Defect Engineering in Semiconductor Technology, GADEST 2005, 25 September 2005 through 30 September 2005 ; Volume 108-109 , 2005 , Pages 71-76 ; 10120394 (ISSN); 9783908451136 (ISBN) Grisolia, J ; Shalchian, M ; Benassayag, G ; Coffin, H ; Bonafos, C ; Dumas, C ; Atarodi, S. M ; Claverie, A ; Pichaud B ; Claverie A ; Alquier D ; Richter H ; Kittler M ; Richter H ; Kittler M ; Sharif University of Technology
    Trans Tech Publications Ltd  2005
    Abstract
    In this paper, we have studied the evolution of quantum electronic features with the size of silicon nanoparticles embedded in an ultra-thin SiO2 layer. These nanoparticles were synthesized by ultralow energy (1 KeV) ion implantation and annealing. Their size was modified using the effect of annealing under slightly oxidizing ambient (N2+O2). Material characterization techniques including transmission electron microscopy (TEM) Fresnel imaging and spatially resolved electron energy loss spectroscopy (EELS) have been used to evaluate the effects of oxidation on structural characteristics of nanocrystal layer. Electrical transport characteristics have been measured on few (less than two...