Search for: nanoscale-technologies
0.005 seconds

    Micro and nanoscale technologies in oral drug delivery

    , Article Advanced Drug Delivery Reviews ; Volume 157 , 2020 , Pages 37-62 Ahadian, S ; Finbloom, J. A ; Mofidfar, M ; Diltemiz, S. E ; Nasrollahi, F ; Davoodi, E ; Hosseini, V ; Mylonaki, I ; Sangabathuni, S ; Montazerian, H ; Fetah, K ; Nasiri, R ; Dokmeci, M. R ; Stevens, M. M ; Desai, T. A ; Khademhosseini, A ; Sharif University of Technology
    Elsevier B.V  2020
    Oral administration is a pillar of the pharmaceutical industry and yet it remains challenging to administer hydrophilic therapeutics by the oral route. Smart and controlled oral drug delivery could bypass the physiological barriers that limit the oral delivery of these therapeutics. Micro- and nanoscale technologies, with an unprecedented ability to create, control, and measure micro- or nanoenvironments, have found tremendous applications in biology and medicine. In particular, significant advances have been made in using these technologies for oral drug delivery. In this review, we briefly describe biological barriers to oral drug delivery and micro and nanoscale fabrication technologies.... 

    A Low area overhead NBTI/PBTI sensor for SRAM memories

    , Article IEEE Transactions on Very Large Scale Integration (VLSI) Systems ; Volume 25, Issue 11 , 2017 , Pages 3138-3151 ; 10638210 (ISSN) Karimi, M ; Rohbani, N ; Miremadi, S. G ; Sharif University of Technology
    Bias temperature instability (BTI) is known as one serious reliability concern in nanoscale technologies. BTI gradually increases the absolute value of threshold voltage (Vth) of MOS transistors. The main consequence of Vth shift of the SRAM cell transistors is the static noise margin (SNM) degradation. The SNM degradation of SRAM cells results in bit-flip occurrences due to transient faults and should be monitored accurately. This paper proposes a sensor called write current-based BTI sensor (WCBS) to assess the BTI-aging state of SRAM cells. The WCBS measures BTI-induced SNM degradation of SRAM cells by monitoring the maximum write current shifts due to BTI. The observations show that the... 

    LAXY: a location-based aging-resilient Xy-Yx routing algorithm for network on chip

    , Article IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems ; Volume 36, Issue 10 , 2017 , Pages 1725-1738 ; 02780070 (ISSN) Rohbani, N ; Shirmohammadi, Z ; Zare, M ; Miremadi, S. G ; Sharif University of Technology
    Network on chip (NoC) is a scalable interconnection architecture for ever increasing communication demand between processing cores. However, in nanoscale technology size, NoC lifetime is limited due to aging processes of negative bias temperature instability, hot carrier injection, and electromigration. Usually, because of unbalanced utilization of NoC resources, some parts of the network experience more thermal stress and duty cycle in comparison with other parts, which may accelerate chip failure. To slow down the aging rate of NoC, this paper proposes an oblivious routing algorithm called location-based aging-resilient Xy-Yx (LAXY) to distribute packet flow over entire network. LAXY is...