Loading...
Search for: nanoscience-and-nanotechnologies
0.006 seconds

    Group 6 transition metal dichalcogenide nanomaterials: synthesis, applications and future perspectives

    , Article Nanoscale Horizons ; Volume 3, Issue 2 , 2018 , Pages 90-204 ; 20556756 (ISSN) Samadi, M ; Sarikhani, N ; Zirak, M ; Zhang, H ; Zhang, H. L ; Zaker Moshfegh, A. R ; Sharif University of Technology
    Royal Society of Chemistry  2018
    Abstract
    Group 6 transition metal dichalcogenides (G6-TMDs), most notably MoS2, MoSe2, MoTe2, WS2 and WSe2, constitute an important class of materials with a layered crystal structure. Various types of G6-TMD nanomaterials, such as nanosheets, nanotubes and quantum dot nano-objects and flower-like nanostructures, have been synthesized. High thermodynamic stability under ambient conditions, even in atomically thin form, made nanosheets of these inorganic semiconductors a valuable asset in the existing library of two-dimensional (2D) materials, along with the well-known semimetallic graphene and insulating hexagonal boron nitride. G6-TMDs generally possess an appropriate bandgap (1-2 eV) which is... 

    The study of growth and coagulation of titania nanoparticles by chemical vapor synthesis

    , Article Journal of Nuclear Science and Technology ; No.53 , 2010 , pp. 20-29 Rahiminezhad-Soltani, M ; Saberyan, K ; Shahri, F ; Simchi, A. (Abdolreza) ; Sharif Univesity of Technology
    Abstract
    Chemical Vapor Synthesis route was used for synthesis of titanium dioxide (TiO2) nanoparticles in hot-walled reactor at 800degreeC using TiCl4 as precursor. The effect of processing parameters e.g., temperature and amount of precursor on phase structure, size, purity, coagulation and agglomeration of nanoparticles were investigated in this respect. Also, the H2O effects on the size, crystallinity, phase transformation and purity of nanoparticles were studied. Comprehensive experimental observations were confirmed by transmission electron microscopy, X-ray diffraction analysis and thermal gravimetric-differential thermal analysis results. The obtained results showed that by increasing the... 

    Interdisciplinary challenges and promising theranostic effects of nanoscience in Alzheimer's disease

    , Article RSC Advances ; Volume 2, Issue 12 , 2012 , Pages 5008-5033 ; 20462069 (ISSN) Laurent, S ; Ejtehadi, M. R ; Rezaei, M ; Kehoe, P. G ; Mahmoudi, M ; Sharif University of Technology
    2012
    Abstract
    During the last decade, reports show that the incidence and prevalence of Alzheimer's disease (AD) and other dementias have significantly increased. AD poses an enormous escalating threat to health services and resources. Early diagnosis of AD is recognized as one of the major challenges and primary aims in scientific communities. With the arrival of nanoscience and nanotechnology to medicine, hopes for early diagnosis and treatment of AD have considerably increased. To this end, nanobioresearchers are focused on three major areas consisting of early detection and recognition, biological markers and diagnosis, and pharmacotherapy. Several efforts are in progress for the discovery of new... 

    Forbidden spatial frequencies in periodic structures composed of subwavelength nano conducting layers

    , Article 2006 International Conference on Nanoscience and Nanotechnology, ICONN 2006, Brisbane, 3 July 2006 through 6 July 2006 ; 2006 , Pages 474-477 ; 1424404533 (ISBN); 9781424404537 (ISBN) Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2006
    Abstract
    Recently, electromagnetic slow wave propagation in Kronig-Penny photonic crystals composed of conducting interfaces constituted of extremely thin charge layers has been studied, where analytic expressions for Bloch wave numbers in terms of normalized frequency were derived, asymptotic behavior of electromagnetic slow wave propagation in these structures was investigated at different regimes, and the possibility of observing forbidden spatial frequencies was numerically demonstrated. In this manuscript, the existence and electromagnetic behavior of such waves together with the possibility of having forbidden spatial frequency are investigated by taking the finiteness of charge layer thickness... 

    Electrochemical sensing based on carbon nanoparticles: A review

    , Article Sensors and Actuators, B: Chemical ; Volume 293 , 2019 , Pages 183-209 ; 09254005 (ISSN) Asadian, E ; Ghalkhani, M ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2019
    Abstract
    The emergence of nanoscience and nanotechnology has opened up new horizons to researchers. In this regard, carbon nanomaterials are considered as the cornerstone of numerous investigations. Among various carbon nanostructures, “Carbon nanoparticles (CNPs)” have attracted a great deal of attention during the past few years due to their unique properties such as high surface area, non-toxicity, biocompatibility as well as simple and low-cost synthetic procedures via environmentally friendly routes. Thanks to these properties along with their interesting optical behavior, CNPs have found diverse applications in the fields of bioimaging, nanomedicine, photo/electro-catalysis, and bio/chemical... 

    Coupled surface electromagnetic waves supported by subwavelength nano conducting layers

    , Article 2006 International Conference on Nanoscience and Nanotechnology, ICONN 2006, Brisbane, 3 July 2006 through 6 July 2006 ; 2006 , Pages 501-504 ; 1424404533 (ISBN); 9781424404537 (ISBN) Mehrany, K ; Rashidian, B ; Sharif University of Technology
    2006
    Abstract
    Recently, a group of novel devices based on conducting interfaces has been proposed. These conducting interfaces can be implemented by using the inversion layer of MOS structures, trapped charges or depletion layer charges. It has been shown that these structures can support surface electromagnetic waves. In this paper, the coupling of surface electromagnetic waves supported by nano charge layers is analyzed and its asymptotic behavior toward conducting interfaces, where the thin charge layer of finite thickness is modeled via a surface conductivity σs, is numerically studied for the first time. The numerical results driven by coupled mode theory approach are justified by solving exact...