Loading...
Search for:
nanosensor
0.068 seconds
Design and Construction of Tunneling Spectroscope to Study Reaction of Gas with Porous Silicon Surface
, M.Sc. Thesis Sharif University of Technology ; Iraji zad, Azam (Supervisor)
Abstract
Studying the interactions between gas molecules and surface is one of the important issues in the field of sensing. In nanometer scales, it can play a key role in fabricating novel nanosensors. Tunneling spectroscopy, on the other hand, is a powerful method for studying the local electrical properties of surface. Our purpose in this project is to design and construct a local tunneling spectroscope, which is able to probe the effects of adsorption of gas molecules on local density of state (LDOS) in sub-nanometer scales. The designed and constructed local tunneling spectroscope system includes a small chamber, which is isolated from any vibrations by means of a set of dampers. In the main...
Dynamics of Magnetic Nanoparticles in Biologically Inspired Flows under Effect of Electric and Magnetic Fields with Application in Epilepsy Detection
, Ph.D. Dissertation Sharif University of Technology ; Alasty, Aria (Supervisor) ; Ghaffarzadeh, Ebrahim (Supervisor) ; Shamloo, Amir (Co-Advisor)
Abstract
This thesis presents my Ph.D. research study focusing on the dynamic analysis of magnetic nanoparticles (MNPs) for epilepsy and blood-brain barrier (BBB) applications. In this analysis, we took into account various parameters including the magnetic field, fluid behavior, geometry and material of MNPs. Based on this computational study, the generated magnetic field in epileptic foci results in the aggregation of nanoparticles. This may offer the advantage of using MNPs as a Magnetic Resonance Imaging (MRI) contrast agent. Furthermore, in this study, we also demonstrated and discussed the advantage of MNPs for crossing BBB using the external magnetic field. The outcome of this research project...
Numerical Investigation of Off-axis translocation, Shape, and the Electrical Charge of a Nanoparticle in the Nanofluidic Conduit
, M.Sc. Thesis Sharif University of Technology ; Taghipoor, Mojtaba (Supervisor)
Abstract
The advent of nanopore-based sensors based on resitive pulse sensing gave rise to a remarkable breakthrough in the detection and characterization of nanoscale species. The sensors can detect the species’concentration, size, and charge using the resistive pulse characteristics. Some strong correlations have been reported between the resitive pulse characteristics and the particle’s geometrical and physical properties. These correlations are commonly used to obtain information about the particles in commercial devices and research setups. The correlations, however, do not consider the simultaneous effect of influential factors such as particle shape, charge, and off-axis translocation, which...