Loading...
Search for: natural-bond-orbital--nbo
0.011 seconds

    The intramolecular cation-π interaction of some aryl amines and its drastic influence on the basicity of them: AIM and NBO analysis

    , Article Computational and Theoretical Chemistry ; Vol. 1036 , May , 2014 , pp. 51-60 ; ISSN: 2210271X Kheirjou, S ; Fattahi, A ; Hashemi, M. M ; Sharif University of Technology
    Abstract
    In this study, drastic influence of the intramolecular cation-π interaction on the basicity of selected amines has been considered. The optimized minimum energy geometries of different studied amines and their protonated structures were determined by using DFT calculations at the B3LYP/6-311++G(d,p) level of theory. Geometry optimizations indicate that the most stable structures of protonated amines are stabilized by intramolecular cation-π interaction. The proton affinity (PA) of selected amines is controlled by the strength of intramolecular cation-π interaction of ammonium with aromatic ring. These cation-π interactions strongly influence the basicity of amines. Natural bond orbital (NBO)... 

    Theoretical descriptors response to the calculations of the relative pK a values of some boronic acids in aqueous solution: A DFT study

    , Article Computational and Theoretical Chemistry ; Volume 1000 , 2012 , Pages 1-5 ; 2210271X (ISSN) Kheirjou, S ; Abedin, A ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    With the specific target of calculating the pK a values of boronic acids (RB(OH) 2) in aqueous solution we inquired the solute-solvent interactions of these acids and their corresponding conjugate base. Relative pK a values were computed for each boronic acid using methylboronic acid (CH 3B(OH) 2) as a reference. All gas phase computations were performed at (MP2/6-311++G(d,p)//B3LYP/6-31+G(d)) level of theory. Solvation was included in the calculations using the polarized continuum model (PCM) at the HF/6-31G(d,p) level. The geometry optimization of studied structures was performed with DFT computation and the optimized structures were used to carry out Natural Bond Orbital (NBO) analysis.... 

    Molecular structure and character of bonding of mono and divalent metal cations (Li +, Na +, K +, Mg 2+, Ca 2+, Zn 2+, and cu +) with guanosine: AIM and NBO analysis

    , Article Structural Chemistry ; Volume 23, Issue 3 , June , 2012 , Pages 613-626 ; 10400400 (ISSN) Ahmadi, M. S ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    The B3LYP/6-311++G (d,p) density functional approach was used to study the gas-phase metal affinities of Guanosine (ribonucleoside) for the Li +, Na +, K +, Mg 2+, Ca 2+, Zn 2+, and Cu + cations. In this study we determine coordination geometries, binding strength, absolute metal ion affinities, and free energies for the most stable products. We have also compared the results for Guanosine, with our previously reported results for 20-Deoxyguanosine. Based on the results, it is obvious that MIA is strongly dependent on the charge-to-size ratio of the cation. Guanosine interacts more strongly with Zn 2+ than do with Mg 2+, Ca 2+, and Cu? and therefore stronger interactions lead to higher MIA.... 

    Theoretical investigation on the structural and electronic properties of complexes formed by thymine and 2'-deoxythymidine with different anions

    , Article Structural Chemistry ; Volume 23, Issue 1 , July , 2012 , Pages 17-28 ; 10400400 (ISSN) Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    Hydrogen bonding interactions between thymine nucleobase and 2'-deoxythymidine nucleoside (dT) with some biological anions such as F - (fluoride), Cl - (chloride), OH - (hydroxide), and NO 3 - (nitrate) have been explored theoretically. In this study, complexes have been studied by density functional theory (B3LYP method and 6-311++G (d,p) basis set). The relevant geometries, energies, and characteristics of hydrogen bonds (H-bonds) have been systematically investigated. There is a correlation between interaction energy and proton affinity for complexes of thymine nucleobase. The nature of all the interactions has been analyzed by means of the natural bonding orbital (NBO) and quantum theory... 

    Theoretical Investigation of Hydrogen Bonding Effects on Interaction of Metal Nanoclusters with Histidine, Oxidation of Olefins by MnO4– & Acidity Enhancement of Alcohols

    , Ph.D. Dissertation Sharif University of Technology Jebeli Javan, Marjan (Author) ; Fattahi, Alireza (Supervisor) ; Mahmoodi Hashemi, Mohammad (Supervisor) ; Jamshidi, Zahra (Supervisor)
    Abstract
    This thesis is divided into three parts: In part I, interactions of neutral and anionic forms of histidine with coinage metal nano clusters M3 (M = Au, Ag and Cu) are investigated. Results demonstrate that nonconventional M…H-O hydrogen bonds and M-X bonds (X = N, O) play stabilization roles in interactions of histidine and metal nano clusters. Presence of negative charge in ligand leads to increase of binding energy of complexes. In the next step, the effects of coinage metal nano clusters on the gas-phase acidity of weak organic acid (histidine) have been explored. The acidity of isolated histidine is compared with the acidity of its Au3–, Ag3– and Cu3–complexed species. Moreover, pKa... 

    Structural, non-covalent interaction, and natural bond orbital studies on bromido-tricarbonyl rhenium(I) complexes bearing alkyl-substituted 1,4-diazabutadiene (DAB) ligands

    , Article Crystals ; Volume 10, Issue 4 , April , 2020 Kia, R ; Kalaghchi, A ; Sharif University of Technology
    MDPI AG  2020
    Abstract
    The synthesis, characterization, structural and computational studies of Re(I) tricarbonyl bromo complexes bearing alkyl-substituted 1,4-diazabutadiene ligands, [Re(CO)3(1,4-DAB)Br], where 1,4-DAB = N,N-bis(2,4-dimethylbenzene)-1,4-diazabutadiene,2,4-Me 2DAB (1); N,N-bis(2,4-dimethylbenzene)-2,3-dimethyl-1,4-diazabutadiene,2,4-Me 2DABMe (2); N,N-bis(2,4,6-trimethylbenzene)-1,4-diazabutadiene,2,4,6-Me 3DAB (3); and N,N-bis(2,6-diisopropylbenzene)-1,4-diazabutadiene,2,6-ipr 2DAB (4) are reported. The complexes were characterized by different spectroscopic methods such as FT-IR,1 H-NMR,13C-NMR, and elemental analyses and their solid-state structures were confirmed by X-ray diffraction. In each... 

    Influence of Intramolecular Hydrogen Bonding on Ability of Leaving Group in SN2 Reactions

    , M.Sc. Thesis Sharif University of Technology Ahmadi, Aliakbar (Author) ; Fattahi, Alireza (Supervisor)
    Abstract
    Many of the significant reactions in chemistry and biology are related to bimolecular nucleophilic substitution (SN2) reactions which have been studied first by Hughes and Ingold in the 1930s. Afterward, many organic chemists have continued this work. Up to now, numerous experimental kinetic and theoretical researches have studied the mechanism of these reactions. Since most SN2 reactions occur in solution, a large number of these studies have been devoted to the solvent effects. One of these effects that has been examined extremely is H-bonding via protic solvents that lowers the energy of an anionic nucleophile relative to the transition state, in which the charge is more diffuse, and... 

    Theoretical Investigation of Hydrogen Bonding Effects on Interaction of Metal Nanoclusters with Biomolecules & Acidity Enhancement of Alcohols

    , Ph.D. Dissertation Sharif University of Technology Ali Akbar Tehrani, Zahra (Author) ; Fattahi, Alireza (Supervisor) ; Mahmoodi Hashemi, Mohammad (Supervisor) ; Jamshidi, Zahra (Co-Advisor)
    Abstract
    This thesis is divided into three parts: In part I, conformational properties of neutral, anionic, cationic and zwitterionic forms of glutathione tripeptide were investigated by means of DFT-B3LYP method with 6-31+G (d,p) basis set. Results show that glutathione is a very flexible molecule and its conformational energy landscape is strongly influenced by forming intramolecular hydrogen bond and its charge. Conformation of each amino acid in glutathione tripeptide depends on its orientation within the peptide sequence in addition to the conformation of other amino acids within the chain. Investigation of intramolecular hydrogen bonds in these conformers by means of AIM analysis demonstrates... 

    Theoretical Investigation of Hydrogen Bonding Effects on Acidity Enhancement of Alkyl sulfonic Acids and Hydroxy Alkyl Sulfonic Acids in Gas and Solution Phase

    , M.Sc. Thesis Sharif University of Technology Najdian, Atena (Author) ; Fattahi, Ali Reza (Supervisor) ; Hormozi-Nezhad, Mohammad Reza (Supervisor)
    Abstract
    Hydrogen bonding is an important weak interaction encountered in gas, liquid, as well as solid phases. The hydrogen bond plays a very vital role in many life processes and is one of the most frequently used terms in chemistry and biology.
    Polyols or polyhydric alcohols are, strictly speaking, simply organic chemicals containing more than two hydroxyl groups. Each hydroxyl is attached to separate carbon atoms of an aliphatic skeleton.They may also contain ester, ether, amide, acrylic, metal, metalloid and other functionalities; along with hydroxyl groups. Polyols are obtained from many plant and animal sources and are synthesized by a variety of methods. Among important properties of... 

    Design and synthesis of new family of ionic liquids based on 2-iminium-1,3-dithiolanes: A combined theoretical and experimental effort

    , Article Journal of Molecular Structure ; Vol. 1056-1057, issue. 1 , January , 2014 , p. 56-62 Ziyaei Halimehjani, A ; Shakourian-Fard, M ; Farvardin, M. V ; Raeesi, M ; Hashemi, M. M ; Behzadi, H ; Sharif University of Technology
    Abstract
    An efficient method for synthesis of 2-iminium-1,3-dithiolane as a new family of ionic liquids with reaction of dithiocarbamates with methyl triflouromethanesulfonate was described. Theoretical study on the synthesized ionic liquids was also performed by quantum chemistry calculation. Geometry optimization on the ion pairs was carried out with the B3LYP/6-311++G(d,p) level of theory. The interaction energies were calculated, and corrected by the basis set superposition error (BSSE) calculated by the counterpoise method. The results of natural bond orbital (NBO) and quantum theory of atoms in molecules (QTAIM) analyses indicate that the interactions occur via hydrogen bonding between oxygen... 

    Interaction of cations with 2′-deoxythymidine nucleoside and analysis of the nature and strength of cation bonds

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 2 , JAN , 2012 , Pages 153-161 ; 08943230 (ISSN) Shakourian Fard, M ; Fattahi, A ; Jamshidi, Z ; Sharif University of Technology
    2012
    Abstract
    Binding of Mg 2+, Ca 2+, Zn 2+, and Cu + metal ions with 2′-deoxythymidine (dT) nucleoside was studied using a density functional theory method and a 6-311++G(d,p) basis set. This work demonstrated that the interaction of dT with these cations is tri-coordinated · (O2, O4′, O5′). Among the four types of cations, Zn 2+ cation exhibited the most tendency to interact with the dT. Cations via their interaction with dT can affect the N-glycosidic bond length, the values of pseudorotation of the sugar ring, the orientation of the base unit with respect to the sugar ring, and the acidity of the O5′H, O3′H, and N3H groups in the dT nucleoside. Natural bond orbital analysis was performed to calculate... 

    Influence of the hydrogen bonding on the basicity of selected macrocyclic amines

    , Article Journal of Physical Organic Chemistry ; Volume 25, Issue 9 , 2012 , Pages 803-810 ; 08943230 (ISSN) Nasiri, M ; Shakourian Fard, M ; Fattahi, A ; Sharif University of Technology
    2012
    Abstract
    The optimized minimum-energy geometries of different macrocyclic amines and their protonated structures were determined by using ab initio and density functional theory (DFT) calculations. All the gas phase optimizations and energy calculations were performed at the DFT/B3LYP/6-311++G(d,p) level of theory. The HF/6-31 + G(d,p) level was used for all single point calculations in the solution phase. Geometry optimizations indicate that the most stable structures are stabilized by intramolecular hydrogen bonds. The proton affinity (PA) of macrocyclic amines is controlled by the strength of intramolecular hydrogen bonds of macrocyclic amines. These hydrogen bonds strongly influence the basicity...