Loading...
Search for: natural-gas-reforming
0.007 seconds

    The quantitative risk assessment of a hydrogen generation unit

    , Article International Journal of Hydrogen Energy ; Volume 37, Issue 24 , December , 2012 , Pages 19241-19249 ; 03603199 (ISSN) Jafari, M. J ; Zarei, E ; Badri, N ; Sharif University of Technology
    2012
    Abstract
    The safety of hydrogen generation process is a major concern. This paper discusses the quantitative analyzes of the risk imposed on neighborhood from the operation of a hydrogen generator using natural gas reforming process. For this purpose, after hazard identification, the frequency of scenarios was estimated using generic data. Quantitative risk assessment was applied for consequence modeling and risk estimation. The results revealed that, jet fire caused by a full bore rupture in Desulphurization reactor has the highest fatality (26person) and affects the largest area of 5102 m2. The lethality radius, maximum radiation and safe distance of this incident were 140 m, 370 kW/m2 and 225 m... 

    Exergy analysis of waste heat recovery section in steam-natural gas reforming process

    , Article Energy and Fuels ; Volume 29, Issue 5 , April , 2015 , Pages 3322-3327 ; 08870624 (ISSN) Shariati, M. H ; Farhadi, F ; Sharif University of Technology
    American Chemical Society  2015
    Abstract
    In this work, an exergy analysis is performed for the waste heat recovery section (WHRS) of the steam-natural gas reforming (SNGR) process as a major energy intensive process. Two alternate conditions are investigated to evaluate the required thermodynamic parameters: normal operating condition and increase of C2+ components in the process feed stream. At normal operating condition, the exergy efficiency of WHRS amounts to 0.58 while some 17.2 kJ energy is destructed for each mole of H2 produced. If heavier than methane components are increased in the feed up to 8.5 mole %, despite the increase of H2 production, the exergy efficiency decreases down to 0.54...