Loading...
Search for: natural-heat-transfers
0.011 seconds

    Theoretical comparative assessment of single- and two-phase models for natural convection heat transfer of Fe3O4/ethylene glycol nanofluid in the presence of electric field

    , Article Journal of Thermal Analysis and Calorimetry ; 2020 Etesami, N ; Tavakoli, S ; Pishvaie, M. R ; Sharif University of Technology
    Springer Netherlands  2020
    Abstract
    Natural convective heat transfer of Fe3O4/ethylene glycol nanofluids around the platinum wire as a heater in the absence and presence of the high electric field was investigated, numerically. The control volume finite element method was employed for the numerical simulation. Effects of the flow model, the volume fraction of nanoparticles, Rayleigh number, and the electric field intensity on the natural heat transfer coefficient (NHTC) of nanofluid were studied. Simulation results of single-phase and two-phase flow models showed that the two-phase model could better predict experimental data than the single-phase model due to take into account the velocity of each phase in the mixture. The... 

    Theoretical comparative assessment of single- and two-phase models for natural convection heat transfer of Fe3O4/ethylene glycol nanofluid in the presence of electric field

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 146, Issue 2 , 2021 , Pages 981-992 ; 13886150 (ISSN) Etesami, N ; Tavakoli, S ; Pishvaie, M. R ; Sharif University of Technology
    Springer Science and Business Media B.V  2021
    Abstract
    Natural convective heat transfer of Fe3O4/ethylene glycol nanofluids around the platinum wire as a heater in the absence and presence of the high electric field was investigated, numerically. The control volume finite element method was employed for the numerical simulation. Effects of the flow model, the volume fraction of nanoparticles, Rayleigh number, and the electric field intensity on the natural heat transfer coefficient (NHTC) of nanofluid were studied. Simulation results of single-phase and two-phase flow models showed that the two-phase model could better predict experimental data than the single-phase model due to take into account the velocity of each phase in the mixture. The...