Loading...
Search for: needle-trap-devices
0.006 seconds

    Modified Nano Silica a Sorbent for Needle Trap Extraction of PAHs from Water Samples Followed by Gas Chromatography/Mass Spectrometric Determination

    , M.Sc. Thesis Sharif University of Technology Roostayi, Ali (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    In this study, a newly designed needle trap device (NTE) containing modified nanosilica as sorbent is used for sampling and preconcentration of some polycyclic aromatic hydrocarbons (PAHs) from headspace of aqueous solutions. An inexpensive modifier, cis-9-octadecenoic acid (oleic acid), which contains a long chain, was used to modify the surface of the nano-scaled silica particles. The hydrophobic interaction between oleic acid and aromatic compounds was the preliminary evidence for extraction of these compounds. After adsorption of selected compounds, thermal desorption was, subsequently, employed to transfer the extracted analytes into a GC–FID. Extraction time and temperature, flow rate... 

    Three-Dimensional Polyamide Nanofibrous Scaffolds for Needle Trap Microextraction of Chlorobenzenes from Water Samples and Comparing them with Two-Dimensional Nanofibres

    , M.Sc. Thesis Sharif University of Technology Manshaei, Faranak (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    In the past decades, electrospinning has been widely used for the production of micro/nanofibers. In spite of the simplicity and effectivity of the conventional electrospinning for fabricating nanofibers, compact structure and small pores of the nanofibers hinder the efficient penetration of analytes during the extraction process. In order to overcome this issue, an applicable strategy called wet electrospinnig has been employed to enlarge the pore size of the electrospun scaffolds. By applying this technique, a collector was placed at the bottom of a solvent bath and highly porous foam from polyamide nanofibers was produced immediately after freeze-drying (3D electrospinning).... 

    Preparation and Application of Superhydrophobic Melamine Formaldehyde Modified by Graphene Sorbent for Extraction of Chlorobenzenes from Aqueous Samples by Needle-trap Device

    , M.Sc. Thesis Sharif University of Technology Dorabadi Zare, Farzaneh (Author) ; Bagheri, Habib (Supervisor)
    Abstract
    Superhydrophobic surfaces have attracted much attention in recent years due to their unique properties. Artificial superhydrophobic surfaces can be fabricated by employing chemical modifying a hierarchical structured surface (micro- and nanostructures) with a low surface free energy material. In this report, we used a simple one-step coating process to prepare superhydrophobic sorbents with a large surface area. Surface chemistry and porosity are fundamental parameters for an efficient sorbent capable of extracting low levels of analytes. Considering physical and chemical peroperties of chlorobenzenes, superhydrophobic materials make to be good sorbents. So in this project melamine... 

    A novel needle trap sorbent based on carbon nanotube-sol-gel for microextraction of polycyclic aromatic hydrocarbons from aquatic media

    , Article Analytica Chimica Acta ; Volume 683, Issue 2 , January , 2011 , Pages 212-220 ; 00032670 (ISSN) Bagheri, H ; Ayazi, Z ; Aghakhani, A ; Sharif University of Technology
    2011
    Abstract
    A new type of composite material based on carbon nanotubes (CNTs) and sol-gel chemistry was prepared and used as sorbent for needle trap device (NTD). The synthesized composite was prepared in a way to disperse CNTs molecules in a sol-gel polymeric network. CNT/silica composites with different CNT doping levels were successfully prepared, and the extraction capability of each composite was evaluated. Effects of surfactant and the oxidation duration of CNTs on the extraction efficiency of synthesized composites were also investigated. The applicability of the synthesized sorbent was examined by developing a method based on needle trap extraction (NTE) and gas chromatography mass spectrometry...