Loading...
Search for: nephron
0.063 seconds

    Simulation of Urine Concentrating Mechanism in Rat Kidney Inner Medulla

    , M.Sc. Thesis Sharif University of Technology Sanatkhani, Soroush (Author) ; Saeedi, Mohammad Saeed (Supervisor)
    Abstract
    Physicians use charts that are prepared by experiments on animals or humans to prescribe drug dosage for patients. This method requires much more time by the Ministry of Health to approve new drugs to be used in health-care centers. Furthermore،we have no sight on how a specific drug is going to be diffuse in our body. In order to predict the distribution of a drug or any minerals in the kidney we need to model it. The first step would be modeling the important species that influence the urine concentrating mechanism. Due to the complications in modeling that mechanism especially in the inner medulla zone، we hadn’t solid information regarding that area. It is about half a century that... 

    Modeling of Renal Autoregulation Systems

    , M.Sc. Thesis Sharif University of Technology Rajabtabar, Mohammad Javad (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Firoozbakhsh, Keikhosrow (Supervisor)
    Abstract
    The mathematical analysis of the kidney has always been considered due to its complex performance. It’s about two decades that mathematicians work on the mathematical modeling of this tissue. Since Glomerular filtration of blood in the kidney has been regarded by physiologists for many years, they can access only to the qualitative data. Mathematicians can solve this problem by numerical modeling. In this research, an engineering model is presented for the analysis of this capillary network by investigating in the different scientific fields such as, physiology, medicine, computer science and mathematics. There are two major renal autoregulatory mechanisms, the myogenic response and the... 

    Design and Fabrication of a Microfluidic Kidney Nephron-on-Chip Platform

    , M.Sc. Thesis Sharif University of Technology Yahyazadeh Shourabi, Arash (Author) ; Saeedi, Mohammad Saeed (Supervisor) ; Hajilouy Benisi, Ali (Supervisor) ; Moghadas, Hajar (Co-Supervisor)
    Abstract
    In this manuscript, we designed and fabricated a novel integrated microfluidic Kidney Nephron-On-Chip. This chip is able to culture cell monolayers under various fluid shear stresses and divert osmotic pressure gradients while imposing four different concentrations of an injected drug on cells. The multi-layer platform consisting of two bubble-trappers to eliminate all unwanted bubbles from the system, a concentration gradient generator to generate four different concentrations of the injected drug, and a membrane-based cell culture chamber caple of providing renal cells with their in-vivo condition. Using colorimetric techniques, the bubble trapper ability was quantified at flow rates up to...