Loading...
Search for: neuro-musculoskeletal-arm-model
0.004 seconds

    A planar neuro-musculoskeletal arm model in post-stroke patients

    , Article Biological Cybernetics ; Volume 112, Issue 5 , 2018 , Pages 483-494 ; 03401200 (ISSN) Asghari, M ; Behzadipour, S ; Taghizadeh, G ; Sharif University of Technology
    Abstract
    Mathematical modeling of the neuro-musculoskeletal system in healthy subjects has been pursued extensively. In post-stroke patients, however, such models are very primitive. Besides improving our general understanding of how stroke affects the limb motions, they can be used to evaluate rehabilitation strategies by computer simulations before clinical evaluations. A planar neuro-musculoskeletal arm model for post-stroke patients is developed. The main idea is to use a set of new coefficients, Muscle Significance Factors (MSF), to incorporate the effects of stroke in the muscle control performance. The model uses the optimal control theory to mimic the performance of the CNS and a two-link... 

    Development a planar neuro-musculoskeletal arm model in post-stroke patients

    , Article 26th National and 4th International Iranian Conference on Biomedical Engineering, ICBME 2019, 27 November 2019 through 28 November 2019 ; 2019 , Pages 236-241 ; 9781728156637 (ISBN) Nikzad Goltapeh, A ; Asghari, M ; Behzadipour, S ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Computational models of the central nervous system after a stroke helps to reveal the physiological mechanisms that may have strong impacts on the neuro-motor rehabilitation approaches. This paper studies the stroke subject's motor control mechanism in reaching movements by extending the previous study by incorporating the kinematics of motion as well as neural disconnection between the muscles and the CNS to further develop a planar patient specific neuro-musculoskeletal model of arm. The developed model was calibrated to eight post-stroke individuals by altering the Muscle Significance Factors (MFS) using numerical optimization to match the simulated motions with those measured...