Loading...
Search for: neuroimaging
0.005 seconds
Total 25 records

    Is Neurological Research Support New Social Media Injuries ?

    , M.Sc. Thesis Sharif University of Technology Rasouli, Somayeh (Author) ; Hosseini, Hassan (Supervisor)
    Abstract
    For more than two decades psychologists and sociologists have been warning about the damage of new social media. in the last decade, the neurological research has been developed to provide an empirical foundation to support the above hypothesis. Much of the research has focused on teenagers and young adults as the so-called digital native and as the largest number of social media users. They hold that a significant contribution to the adolescent trend plays a significant role in the tendency of individuals toward social media, thus increasing impulsive behavior. The three parts of the brain, namely the "social cognition network," the "self-referential cognition network" and the "reward... 

    Semi-spatiotemporal fMRI brain decoding

    , Article Proceedings - 2013 3rd International Workshop on Pattern Recognition in Neuroimaging, PRNI 2013 ; 2013 , Pages 182-185 ; 9780769550619 (ISBN) Kefayati, M. H ; Sheikhzadeh, H ; Rabiee, H. R ; Soltani Farani, A ; Sharif University of Technology
    2013
    Abstract
    Functional behavior of the brain can be captured using functional Magnetic Resonance Imaging (fMRI). Even though fMRI signals have temporal and spatial structures, most studies have neglected the temporal structure when inferring mental states (brain decoding). This has two main side effects: 1. Degradation in brain decoding performance due to lack of temporal information in the model, 2. Inability to provide temporal interpretability. Few studies have targeted this issue but have had less success due to the burdening challenges related to high feature-to-instance ratio. In this study, a novel model for incorporating temporal information while maintaining a low feature-to-instance ratio, is... 

    Using distance on the Riemannian manifold to compare representations in brain and in models

    , Article NeuroImage ; Volume 239 , 2021 ; 10538119 (ISSN) Shahbazi, M ; Shirali, A ; Aghajan, H ; Nili, H ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Representational similarity analysis (RSA) summarizes activity patterns for a set of experimental conditions into a matrix composed of pairwise comparisons between activity patterns. Two examples of such matrices are the condition-by-condition inner product and correlation matrix. These representational matrices reside on the manifold of positive semidefinite matrices, called the Riemannian manifold. We hypothesize that representational similarities would be more accurately quantified by considering the underlying manifold of the representational matrices. Thus, we introduce the distance on the Riemannian manifold as a metric for comparing representations. Analyzing simulated and real fMRI... 

    Graph Learning for Brain Connectivity Map Based on fMRI Data

    , M.Sc. Thesis Sharif University of Technology Sharafi, Omid (Author) ; Fatemizadeh, Emadeddin (Supervisor) ; Amini, Arash (Co-Supervisor)
    Abstract
    In recent years, due to the structural need of most medical data for graphic models such as the graphic model of patients and the loss of data correlation in previous methods, graphic methods have been designed and developed. On the other hand, with the growing presence of magnetic resonance imaging devices in various medical centers, a large amount of functional magnetic resonance images of healthy and sick people have become available to researchers. In this study, our goal is to use a new method in the field of graphic modeling so that we can extract functional connectivity graphs from functional magnetic resonance images and measure the performance of these graphs in different groups of... 

    Application of a dissimilarity index of EEG and its sub-bands on prediction of induced epileptic seizures from rat's EEG signals

    , Article IRBM ; Volume 33, Issue 5-6 , December , 2012 , Pages 298-307 ; 19590318 (ISSN) Niknazar, M ; Mousavi, S. R ; Shamsollahi, M. B ; Vosoughi Vahdat, B ; Sayyah, M ; Motaghi, S ; Dehghani, A ; Noorbakhsh, S. M ; Sharif University of Technology
    2012
    Abstract
    Objective: Epileptic seizures are defined as manifest of excessive and hyper-synchronous activity of neurons in the cerebral cortex that cause frequent malfunction of the human central nervous system. Therefore, finding precursors and predictors of epileptic seizure is of utmost clinical relevance to reduce the epileptic seizure induced nervous system malfunction consequences. Researchers for this purpose may even guide us to a deep understanding of the seizure generating mechanisms. The goal of this paper is to predict epileptic seizures in epileptic rats. Methods: Seizures were induced in rats using pentylenetetrazole (PTZ) model. EEG signals in interictal, preictal, ictal and postictal... 

    Effective connectivity inference in the whole-brain network by using rDCM method for investigating the distinction between emotional states in fMRI data

    , Article Computer Methods in Biomechanics and Biomedical Engineering: Imaging and Visualization ; 2022 ; 21681163 (ISSN) Farahani, N ; Ghahari, S ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In recent years, the regression dynamic causal modelling (rDCM) method was introduced as a new version of dynamic causal modelling (DCM) to derive effective connectivity in whole-brain networks for functional magnetic resonance imaging (fMRI) data. In this research, we used data obtained while applying the stimulation of audio movie comprised different emotional states. We applied this method to two networks consisting of ten auditory and forty-four regions, respectively. This method was used to study effective connections between emotional states and represent the distinction between emotions. Finally, significant effective connections were found in emotional processing and auditory... 

    MRI-PET image fusion based on NSCT transform using local energy and local variance fusion rules

    , Article Journal of Medical Engineering and Technology ; Vol. 38, issue. 4 , 2014 , p. 211-219 Amini, N ; Fatemizadeh, E ; Behnam, H ; Sharif University of Technology
    Abstract
    Image fusion means to integrate information from one image to another image. Medical images according to the nature of the images are divided into structural (such as CT and MRI) and functional (such as SPECT, PET). This article fused MRI and PET images and the purpose is adding structural information from MRI to functional information of PET images. The images decomposed with Nonsubsampled Contourlet Transform and then two images were fused with applying fusion rules. The coefficients of the low frequency band are combined by a maximal energy rule and coefficients of the high frequency bands are combined by a maximal variance rule. Finally, visual and quantitative criteria were used to... 

    Robust algorithm for brain magnetic resonance image (MRI) classification based on GARCH variances series

    , Article Biomedical Signal Processing and Control ; Volume 8, Issue 6 , 2013 , Pages 909-919 ; 17468094 (ISSN) Kalbkhani, H ; Shayesteh, M. G ; Zali Vargahan, B ; Sharif University of Technology
    2013
    Abstract
    In this paper, a robust algorithm for disease type determination in brain magnetic resonance image (MRI) is presented. The proposed method classifies MRI into normal or one of the seven different diseases. At first two-level two-dimensional discrete wavelet transform (2D DWT) of input image is calculated. Our analysis show that the wavelet coefficients of detail sub-bands can be modeled by generalized autoregressive conditional heteroscedasticity (GARCH) statistical model. The parameters of GARCH model are considered as the primary feature vector. After feature vector normalization, principal component analysis (PCA) and linear discriminant analysis (LDA) are used to extract the proper... 

    A framework for content-based human brain magnetic resonance images retrieval using saliency map

    , Article Biomedical Engineering - Applications, Basis and Communications ; Volume 25, Issue 4 , 2013 ; 10162372 (ISSN) Tarjoman, M ; Fatemizadeh, E ; Badie, K ; Sharif University of Technology
    2013
    Abstract
    Content-based image retrieval (CBIR) makes use of low-level image features, such as color, texture and shape, to index images with minimal human interaction. Considering the gap between low-level image features and the high-level semantic concepts in the CBIR, we proposed an image retrieval system for brain magnetic resonance images based on saliency map. The saliency map of an image contains important image regions which are visually more conspicuous by virtue of their contrast with respect to surrounding regions. First, the proposed approach exploits the ant colony optimization (ACO) technique to measure the image's saliency through ants' movements on the image. The textural features are... 

    Synchronizability of EEG-based functional networks in early alzheimer's disease

    , Article IEEE Transactions on Neural Systems and Rehabilitation Engineering ; Volume 20, Issue 5 , 2012 , Pages 636-641 ; 15344320 (ISSN) Tahaei, M. S ; Jalili, M ; Knyazeva, M. G ; Sharif University of Technology
    IEEE  2012
    Abstract
    Recently graph theory and complex networks have been widely used as a mean to model functionality of the brain. Among different neuroimaging techniques available for constructing the brain functional networks, electroencephalography (EEG) with its high temporal resolution is a useful instrument of the analysis of functional interdependencies between different brain regions. Alzheimer's disease (AD) is a neurodegenerative disease, which leads to substantial cognitive decline, and eventually, dementia in aged people. To achieve a deeper insight into the behavior of functional cerebral networks in AD, here we study their synchronizability in 17 newly diagnosed AD patients compared to 17 healthy... 

    Brain activity estimation using EEG-only recordings calibrated with joint EEG-fMRI recordings using compressive sensing

    , Article 13th International Conference on Sampling Theory and Applications, SampTA 2019, 8 July 2019 through 12 July 2019 ; 2019 ; 9781728137414 (ISBN) Ataei, A ; Amini, A ; Ghazizadeh, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    Electroencephalogram (EEG) is a noninvasive, low-cost brain recording tool with high temporal but poor spatial resolution. In contrast, functional magnetic resonance imaging (fMRI) is a rather expensive brain recording tool with high spatial and poor temporal resolution. In this study, we aim at recovering the brain activity (source localization and activity-intensity) with high spatial resolution using only EEG recordings. Each EEG electrode records a linear combination of the activities of various parts of the brain. As a result, a multi-electrode EEG recording represents the brain activities via a linear mixing matrix. Due to distance attenuation, this matrix is almost sparse. Using... 

    fMRI functional connectivity analysis via kernel graph in Alzheimer’s disease

    , Article Signal, Image and Video Processing ; 2020 Ahmadi, H ; Fatemizadeh, E ; Motie-Nasrabadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2020
    Abstract
    Functional magnetic resonance imaging (fMRI) is an imaging tool that is used to analyze the brain’s functions. Brain functional connectivity analysis based on fMRI signals often calculated correlations among time series in different areas of the brain. For FC analysis most prior research works generate the brain graphs based on linear correlations, however, the nonlinear behavior of the brain can lower the accuracy of such graphs. Usually, the Pearson correlation coefficient is used which has limitations in revealing nonlinear relationships. One of the proper methods for nonlinear analysis is the Kernel trick. This method maps the data into a high dimensional space and calculates the linear... 

    Artificial neural network for predicting the safe temporary artery occlusion time in intracranial aneurysmal surgery

    , Article Journal of Clinical Medicine ; Volume 10, Issue 7 , 2021 ; 20770383 (ISSN) Shahjouei, S ; Ghodsi, S. M ; Zangeneh Soroush, M ; Ansari, S ; Kamali Ardakani, S ; Sharif University of Technology
    MDPI  2021
    Abstract
    Background. Temporary artery clipping facilitates safe cerebral aneurysm management, besides a risk for cerebral ischemia. We developed an artificial neural network (ANN) to predict the safe clipping time of temporary artery occlusion (TAO) during intracranial aneurysm surgery. Method. We devised a three-layer model to predict the safe clipping time for TAO. We considered age, the diameter of the right and left middle cerebral arteries (MCAs), the diameter of the right and left A1 segment of anterior cerebral arteries (ACAs), the diameter of the anterior communicating artery, mean velocity of flow at the right and left MCAs, and the mean velocity of flow at the right and left ACAs, as well... 

    fMRI functional connectivity analysis via kernel graph in Alzheimer’s disease

    , Article Signal, Image and Video Processing ; Volume 15, Issue 4 , 2021 , Pages 715-723 ; 18631703 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is an imaging tool that is used to analyze the brain’s functions. Brain functional connectivity analysis based on fMRI signals often calculated correlations among time series in different areas of the brain. For FC analysis most prior research works generate the brain graphs based on linear correlations, however, the nonlinear behavior of the brain can lower the accuracy of such graphs. Usually, the Pearson correlation coefficient is used which has limitations in revealing nonlinear relationships. One of the proper methods for nonlinear analysis is the Kernel trick. This method maps the data into a high dimensional space and calculates the linear... 

    fMRI functional connectivity analysis via kernel graph in Alzheimer’s disease

    , Article Signal, Image and Video Processing ; Volume 15, Issue 4 , 2021 , Pages 715-723 ; 18631703 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie-Nasrabadi, A ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is an imaging tool that is used to analyze the brain’s functions. Brain functional connectivity analysis based on fMRI signals often calculated correlations among time series in different areas of the brain. For FC analysis most prior research works generate the brain graphs based on linear correlations, however, the nonlinear behavior of the brain can lower the accuracy of such graphs. Usually, the Pearson correlation coefficient is used which has limitations in revealing nonlinear relationships. One of the proper methods for nonlinear analysis is the Kernel trick. This method maps the data into a high dimensional space and calculates the linear... 

    Extraction and automatic grouping of joint and individual sources in multi-subject fMRI data using higher order cumulants

    , Article IEEE Journal of Biomedical and Health Informatics ; 24 May , 2018 ; 21682194 (ISSN) Pakravan, M ; Shamsollahi, M. B ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2018
    Abstract
    The joint analysis of multiple datasets to extract their interdependency information has wide applications in biomedical and health informatics. In this paper, we propose an algorithm to extract joint and individual sources of multi-subject datasets by using a deflation based procedure, which is referred to as joint/individual thin independent component analysis (JI-ThICA). The proposed algorithm is based on two cost functions utilizing higher order cumulants to extract joint and individual sources. Joint sources are discriminated by fusing signals of all subjects, whereas individual sources are extracted separately for each subject. Furthermore, JI-ThICA algorithm estimates the number of... 

    Multiclass classification of patients during different stages of Alzheimer's disease using fMRI time-series

    , Article Biomedical Physics and Engineering Express ; Volume 6, Issue 5 , 2020 Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    IOP Publishing Ltd  2020
    Abstract
    Alzheimer's Disease (AD) begins several years before the symptoms develop. It starts with Mild Cognitive Impairment (MCI) which can be separated into Early MCI and Late MCI (EMCI and LMCI). Functional connectivity analysis and classification are done among the different stages of illness with Functional Magnetic Resonance Imaging (fMRI). In this study, in addition to the four stages including healthy, EMCI, LMCI, and AD, the patients have been tracked for a year. Indeed, the classification has been done among 7 groups to analyze the functional connectivity changes in one year in different stages. After generating the functional connectivity graphs for eliminating the weak links, three... 

    WLFS: Weighted label fusion learning framework for glioma tumor segmentation in brain MRI

    , Article Biomedical Signal Processing and Control ; Volume 68 , 2021 ; 17468094 (ISSN) Barzegar, Z ; Jamzad, M ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Glioma is a common type of tumor that develops in the brain. Due to many differences in the shape and appearance, accurate segmentation of glioma for identifying all parts of the tumor and its surrounding tissues in cancer detection is a challenging task in cancer detection. In recent researches, the combination of atlas-based segmentation and machine learning methods have presented superior performance over other automatic brain MRI segmentation algorithms. To overcome the side effects of limited existing information on atlas-based segmentation, and the long training and the time consuming phase of learning methods, we proposed a semi-supervised learning framework by introducing a... 

    Deep sparse graph functional connectivity analysis in AD patients using fMRI data

    , Article Computer Methods and Programs in Biomedicine ; Volume 201 , 2021 ; 01692607 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain function based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship between various brain regions usually measured by correlation analysis. The elements of the correlation matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious correlations due to noises and artifacts. They can not be concluded as real strong correlations between brain regions and their existence could make a misconception and leads to fake results. It is crucial to make a conclusion based on reliable and informative correlations. In order to... 

    Deep sparse graph functional connectivity analysis in AD patients using fMRI data

    , Article Computer Methods and Programs in Biomedicine ; Volume 201 , 2021 ; 01692607 (ISSN) Ahmadi, H ; Fatemizadeh, E ; Motie Nasrabadi, A ; Sharif University of Technology
    Elsevier Ireland Ltd  2021
    Abstract
    Functional magnetic resonance imaging (fMRI) is a non-invasive method that helps to analyze brain function based on BOLD signal fluctuations. Functional Connectivity (FC) catches the transient relationship between various brain regions usually measured by correlation analysis. The elements of the correlation matrix are between -1 to 1. Some of them are very small values usually related to weak and spurious correlations due to noises and artifacts. They can not be concluded as real strong correlations between brain regions and their existence could make a misconception and leads to fake results. It is crucial to make a conclusion based on reliable and informative correlations. In order to...