Search for: newtonian-fluid-flow
0.016 seconds

    Simulation of Blood Flow in Deformable Arteries using SPH

    , M.Sc. Thesis Sharif University of Technology Ghods, Sina (Author) ; Taghizadeh Manzari, Mehrdad (Supervisor) ; Kazemzadeh Hannani, Siamak (Supervisor)
    Since coronary artery diseases are increasing every day, simulation of blood flow in blood vessels and their stenosis is one of the most important topics nowadays. Many efforts have been made to achieve numerical simulations using different methods such as Finite-Difference. In this thesis, an SPH method is used to simulate pulsatile blood flow in arteries. The weakly compressible algorithm consists of two steps of prediction and correction. In the prediction step, the velocity field is integrated forward in time without enforcing incompressibility. The correction step consists of enforcing incompressibility by solving the pressure Poisson equation which creates a trade-off between the... 

    Molecular Dynamics Simulation of Electroosmotic Flow in Nano scales

    , M.Sc. Thesis Sharif University of Technology Zakeri, Ramin (Author) ; Darbandi, Masoud (Supervisor)
    Due to important applications and benefits of mass transfer in engineering and especially in nano-scales engineering, nano-science researchers have focused on this field. Considerably, in classical fluid dynamics applications, the fluid can be transported using differential pressure gradient. But the classical methods require moving components, which are usually expensive and not applicable in nano-sizes. To avoid these problems in nano-size transportation, we can use electro-osmotic process to perform mass transfer in low transfer rates. In electro-osmotic process, we can move electrolyte solvent with the aid of an external electrical field. Due to importance of this process in... 

    Simulation of Blood Flow Subjected to Magnetic Field

    , M.Sc. Thesis Sharif University of Technology Aalizadeh, Farhad (Author) ; Moosavi, Ali (Supervisor) ; Shafie, Mohammad Behshad (Supervisor)
    Considering the fact that there is a blood flow inside the vessels it is possible that blood flow is always associated with fouling and this may decrease the blood flow when a blood vessel is injured, the cells of your blood bond together to form a blood clot. The blood clot helps you stop bleeding. Blood clots are made of a combination of blood cells, platelets (small sticky cells that speed up the clot-making process), and fibrin (protein that forms a thread-like mesh to trap cells). Doctors call this kind of blood clot a “thrombus.” We study the effects of different parameters on the deposition of Nanoparticles on the surface of a bump in the blood vessels by the magnetic field. The... 

    The Study of the Effect of Surfactant on the Liquid Drop Motion In Fluid

    , M.Sc. Thesis Sharif University of Technology Kazempour, Ali (Author) ; Firoozabadi, Bahar (Supervisor) ; Afshin, Hossein (Co-Supervisor)
    The drop motion in fluid and the mass transfer is one of the most interesting and favorite topics that has attracted the attention of many researchers. Knowing the functions of the factors affecting the deformation and the process of mass transfer and the effects of the addition of the surfactant, improve the efficiency of the related industrial processes.In this regard, the present study examines how the shape and speed of a moving Newtonian drop in a Newtonian fluid, the mass transfer of soluble material from inside the drop to the surrounding fluid and also the study of the effect of surfactant on the dynamics of moving droplet is studied numerically. During the drop movement, the... 

    An investigation on the body force modeling in a lattice Boltzmann BGK simulation of generalized Newtonian fluids

    , Article Physica A: Statistical Mechanics and its Applications ; Vol. 415, issue , 2014 , pp. 315-332 Farnoush, S ; Manzari, M. T ; Sharif University of Technology
    Body force modeling is studied in the Generalized Newtonian (GN) fluid flow simulation using a single relaxation time lattice Boltzmann (LB) method. First, in a shear thickening Poiseuille flow, the necessity for studying body force modeling in the LB method is explained. Then, a parametric unified framework is constructed for the first time which is composed of a parametric LB model and its associated macroscopic dual equations in both steady state and transient simulations. This unified framework is used to compare the macroscopic behavior of different forcing models. Besides, using this unified framework, a new forcing model for steady state simulations is devised. Finally, by solving a... 

    Transient behavior of fluid flow and heat transfer in vertical channels partially filled with porous medium: Effects of inertial term and viscous dissipation

    , Article Energy Conversion and Management ; Volume 61 , September , 2012 , Pages 1-7 ; 01968904 (ISSN) Hajipour, M ; Molaei Dehkordi, A ; Sharif University of Technology
    Elsevier  2012
    In this article, transient hydrodynamic and heat-transfer behavior of Newtonian fluid flow in vertical parallel-plate channels partially filled with a porous medium has been investigated numerically. In this regard, the influences of macroscopic local inertial term and the viscous heating due to the viscous dissipation were taken into account in the momentum equations of porous region and the thermal energy equations, respectively. Moreover, Forchheimer-Brinkman extended Darcy model was used to model fluid flow in the porous region. In addition, an analytical solution was obtained in the case of negligible Brinkman and Forchheimer number values at the steady-state conditions. The predicted... 

    A modified SPH method for simulating motion of rigid bodies in Newtonian fluid flows

    , Article International Journal of Non-Linear Mechanics ; Volume 47, Issue 6 , 2012 , Pages 626-638 ; 00207462 (ISSN) Hashemi, M. R ; Fatehi, R ; Manzari, M. T ; Sharif University of Technology
    A weakly compressible smoothed particle hydrodynamics (WCSPH) method is used along with a new no-slip boundary condition to simulate movement of rigid bodies in incompressible Newtonian fluid flows. It is shown that the new boundary treatment method helps to efficiently calculate the hydrodynamic interaction forces acting on moving bodies. To compensate the effect of truncated compact support near solid boundaries, the method needs specific consistent renormalized schemes for the first and second-order spatial derivatives. In order to resolve the problem of spurious pressure oscillations in the WCSPH method, a modification to the continuity equation is used which improves the stability of... 

    Numerical Fluid–Structure Interaction and non-Newtonian Simulation of Blood Flow in a Compliant Carotid Bifurcation

    , M.Sc. Thesis Sharif University of Technology Toloui, Mostafa (Author) ; Firoozabadi, Bahar (Supervisor) ; Saidi, Mohammad Saeid (Co-Advisor)
    Researchers have done a lot of studies about the use of CFS in blood flow modeling in order to improve the supplementary devices or find mechanical factors which cause artery to be diseased. Blood is a complex rheological fluid, blood flow is a pulastile flow, and blood flow field interacts with the deformable vessel wall. Thus, blood flow modeling like other biological phenomena has its own complexities such as anisotropy, vsicoelasticity, and nonlinearity in stress-strain relationship of vessel wall. To explore the role of hemodynamics in the initiation and progression of stenosis in carotid artery bifurcation, a 3D Computational Fluid Dynamics (CFD) technique is applied. The effect of... 

    CFD-DEM Model for Simulation of Non-spherical Particles in Hole Cleaning Process

    , Article Particulate Science and Technology ; Volume 33, Issue 5 , 2015 , Pages 472-481 ; 02726351 (ISSN) Akhshik, S ; Behzad, M ; Rajabi, M ; Sharif University of Technology
    Taylor and Francis Inc  2015
    During the well drilling process, particles are produced in different shapes. The shape of particles can influence the characteristics of particles transport process. The aim of this work is to analyze the effects of particle shape on the transportation mechanism. For this purpose, a three-dimensional model is prepared for simulation of particle transportation with spherical and non-spherical shapes, during deviated well drilling. The motion of particles and the non-Newtonian fluid flow are simulated via discrete element method and CFD, respectively. The two-way coupling scheme is used to incorporate the effects of fluid-particle interactions. Three different samples of non-spherical shapes...