Loading...
Search for: ni-doping
0.004 seconds

    First-principle electronic structure study of Ni-doped BaFe2-xNixAs2 (x = 0, 1, 2) superconductor

    , Article Physica C: Superconductivity and its Applications ; Vol. 506, issue , 2014 , p. 151-153 Inanloo, Z ; Khosroabadi, H ; Abolhassani, M. R ; Akhavan, M ; Sharif University of Technology
    Abstract
    The electronic structure of BaFe2-xNixAs2 (x = 0, 1, 2) as a function of Ni doping has been investigated. Electronic density of states and the band structures are calculated within the first-principle density functional theory for non-magnetic phase. Pseudopotential quantum espresso code in the generalized gradient approximation has been used. Lattice and ionic position parameters of the system have been taken from the experimental data and have been optimized to find the equilibrium structure parameters. The electronic structure is characterized by a sharp Fe/Ni3d peak close to the Fermi level and is dominated by Fe/Ni3d and As4p hybridized states similar to the other Fe-based... 

    Electro-oxidation of alcohols on nickel dispersed in poly-o-aminophenol modified graphite electrode

    , Article Journal of Electroanalytical Chemistry ; Volume 652, Issue 1-2 , 2011 , Pages 8-12 ; 15726657 (ISSN) Jafarian, M ; Babaee, M ; Gobal, F ; Mahjani, M. G ; Sharif University of Technology
    2011
    Abstract
    Electro-oxidation of alcohols (methanol, ethanol, 1-propanol and 2-propanol) on nickel dispersed into a thick layer of poly-o-aminophenol on graphite electrode (GE/POAP-SDS/Ni) was investigated. Ni-doping into the polymeric film was achieved chemically followed by enrichment of Ni(III) through cycling the potential. The electro-oxidation of alcohols on GE/POAP-SDS/Ni were found to be dominated by direct electro-oxidation with some contribution from Ni(II)/Ni(III) couple. Rate constants for the electro-oxidation of methanol, ethanol, 1-propanol and 2-propanol as derived by chronoamperometry were 1.65 × 105, 1.31 × 105, 2.53 × 104 and 1.40 × 104 cm3 mol-1 s-1, respectively. Impedance...