Loading...
Search for: ni-mo-alloys
0.006 seconds

    Characterization of pulse reverse Ni-Mo coatings on Cu substrate

    , Article Surface and Coatings Technology ; Vol. 238 , 2014 , pp. 158-164 ; ISSN: 02578972 Surani Yancheshmeh, H ; Ghorbani, M ; Sharif University of Technology
    Abstract
    The effect of pulse reverse current (PRC) method on Ni-Mo coatings electroplated from chloride solution was investigated by various plating parameters such as plating duration, the anodic duty cycle, the anodic current density and the cathodic current density. By increasing the anodic duty cycle and anodic current density, the Mo content of coatings reached 68wt.% and 78wt.%, respectively at cathodic current densities of 500 and 300mAcm-2. The Mo content of coatings increases by the preferential dissolution of Ni on the anodic pulse and also by the replenishment of Mo complexes in the diffusion layer near the substrate surface during the anodic pulse. In comparison with the direct current... 

    Electropolishing effect on corrosion resistance of electrodeposited nanocrystalline Ni-Mo alloy coatings in NaCl solution

    , Article ECS Transactions ; Volume 45, Issue 19 , 2013 , Pages 65-76 ; 19385862 (ISSN) ; 9781623320355 (ISBN) Roozbehani, B ; Allahyarzadeh, M. H ; Ashrafi, A ; Shadizadeh, S. R ; Seddighian, A ; Sharif University of Technology
    2013
    Abstract
    The aim of current research is to investigate the substrate electropolishing effect on corrosion resistance of Ni-Mo thin films. For this purpose, corrosion resistance of coatings deposited on mild steel substrates, that was electropolished or mechanically polished, have been compared in 3.5 wt.% NaCl solution using potentiodynamic polarization and electrochemical impedance spectroscopy (EIS). The structural properties of Ni-Mo thin films were evaluated using X-ray diffraction (XRD) and their morphology, microstructure and chemical composition were also investigated using scanning electron microscopy (SEM) and X-ray energy dispersive spectroscopy (EDS). Temperature and acidity of deposition...