Loading...
Search for: nickel-foam
0.005 seconds

    Synthesis and Performance Evaluation of FeOOH Elechtrocatalyst Supported on Nickel Foam for Oxygen Evolution Reaction

    , M.Sc. Thesis Sharif University of Technology Nick Maleki, Ali (Author) ; Moshfegh, Alireza (Supervisor) ; Naseri, Naimeh (Co-Supervisor)
    Abstract
    Due to imminent shortage of fossil fuels, environmental issues that occur from their intensive use, population growth and industrialization of societies moving towards renewable energy sources is inevitable. Sun is the most clean and abundant source of energy but it is needed to be accompanied with an energy storage system as it is intermittent and cannot supply our required energies on demand. Water splitting electrochemical cells are promising solutions to cope with this problem by producing hydrogen as a clean fuel. The overpotential imposed by anode is the bottleneck of the water splitting reaction. The anodes with sufficient efficiency that are used today are made from precious and... 

    Improvement of Mechanical Properties of Nickel Nanocatalyst with Application in Methane Reforming

    , Ph.D. Dissertation Sharif University of Technology Zafar Doagoo, Masoomeh (Author) ; Sadrnezhad, Khatiboleslam (Supervisor)
    Abstract
    This research aims to introduce a nanocatalyst based on open-cell nickel foam (NiFm) with 40 pore per inch(ppi) to save energy during methane steam reforming (MSR), an endothermic reaction, by increasing catalyst thermal properties with improved progressive compression strength. The nanocatalyst is synthesized with a chemical stepwise synthesis approach, thermal-chemical pretreatment, pulsed electrocodeposition of Ni-Al2O3 (γ) nanoparticles, and calcination. Herein, a polyurethane (PU) nonconductive substrate is transformed to nickel foam by using replication sponge method. The purchased PU became conductive by nickel electroless bath using sodium hypophosphite with 5-15 (µm) thickness... 

    3D flower-like nickel cobalt sulfide directly decorated grassy nickel sulfide and encapsulated iron in carbon sphere hosts as hybrid energy storage device

    , Article Applied Surface Science ; Volume 558 , 2021 ; 01694332 (ISSN) Shahi, M ; Hekmat, F ; Shahrokhian, S ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    Developing high-performance supercapacitors is of great significance in the area of renewable energies by virtue of having both high energy and power densities. In this work, an innovative strategy is employed for the fabrication of binder-free binary nickel–cobalt-sulfide (NCS) nanosheets (NSs) directly decorated onto the hydrothermal nickel-sulfide (Ni3S2) nanowires (NWs) as the positive electrodes. The NCS/Ni3S2-nickel foam (NF) positive electrodes rendered superior specific capacity of 499.1 mAh.g−1 at 6 A.g−1. Encapsulated iron into the carbon sphere hosts (Fe-HTCSs) are used as the negative counterparts, exhibiting remarkable specific capacitance of 336.6 F.g−1 (at 0.1 A.g−1). The... 

    Binder-free 3D graphene nanostructures on Ni foam substrate for application in capacitive deionization

    , Article Diamond and Related Materials ; Volume 120 , 2021 ; 09259635 (ISSN) Talebi, M ; Ahadian, M. M ; Shahrokhian, S ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Hereby a simple, low-cost and scalable route is being presented for preparation of binder-free electrodes of reduced graphene oxide (RGO) on Ni foam (Ni/Gr). In this regard, the Ni foams are dipped in graphene oxide (GO) slurry. Next, the GO loaded Ni foams are kept in a freeze dryer for 24 h and heated up to 800 °C in an inert atmosphere. In this approach, the amount of active materials can be easily optimized for capacitive deionization (CDI). The characterization of Ni/Gr electrodes revealed a 3D porous assembly of RGO on Ni substrate which is helpful for the fast ion diffusion and rapid electron transport. The electrochemical performance of the prepared electrodes is investigated in both... 

    Urchin-like hierarchical ruthenium cobalt oxide nanosheets on Ti3C2T: XMXene as a binder-free bifunctional electrode for overall water splitting and supercapacitors

    , Article Nanoscale ; Volume 14, Issue 4 , 2022 , Pages 1347-1362 ; 20403364 (ISSN) Asen, P ; Esfandiar, A ; Mehdipour, H ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Synthesizing efficient electrode materials for water splitting and supercapacitors is essential for developing clean electrochemical energy conversion/storage devices. In the present work, we report the construction of a ruthenium cobalt oxide (RuCo2O4)/Ti3C2Tx MXene hybrid by electrophoretic deposition of Ti3C2Tx MXene on nickel foam (NF) followed by RuCo2O4 nanostructure growth through an electrodeposition process. Owing to the strong interactions between RuCo2O4 and Ti3C2Tx sheets, which are verified by density functional theory (DFT)-based simulations, RuCo2O4/Ti3C2Tx MXene@NF can serve as a bifunctional electrode for both water splitting and supercapacitor applications. This electrode... 

    Fabrication of porous polyphosphate carbon composite on nickel foam as an efficient binder-less electrode for symmetric capacitive deionization

    , Article Separation and Purification Technology ; Volume 276 , 2021 ; 13835866 (ISSN) Talebi, M ; Mahdi Ahadian, M ; Shahrokhian, S ; Amini, M. K ; Sharif University of Technology
    Elsevier B.V  2021
    Abstract
    An efficient and commercially available method is introduced for preparation of a binder-free electrode for capacitive deionization (CDI) application. An interconnected porous composite consisting of polyphosphate (PPO), graphene (Gr) and multi-walled carbon nanotube (CNT) is fabricated and assembled on a Ni foam substrate to prepare a binder-free electrode (Ni/PPOGrCNT). The resulting electrodes were characterized using various instrumental techniques such as TEM, SEM, EDS, XRD, FT-IR, Raman, XPS and XRF. Characterization results indicated that a mesoporous PPO structure is formed on a 3D assembly of carbon backbone. Accordingly, the 3-D porous structure facilitates the ion diffusion into... 

    Direct fabrication of phosphorus-doped nickel sulfide and eco-friendly biomass-derived humic acid as efficient electrodes for energy storage applications

    , Article Sustainable Energy and Fuels ; Volume 5, Issue 19 , 2021 , Pages 4869-4881 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2021
    Abstract
    Development of renewable energies is in parallel with improving high-performance energy storage devices, which can store maximum solar or wind energy and power. Herein, asymmetric energy storage systems are constructed from phosphorus-doped nickel sulfide (P-doped NiS) and biomass-derived humic acid (HA) as positive and negative electrodes, respectively. Initially, nickel sulfide (NiS) nanostructures are directly grown onto nickel foam (NF) via a hydrothermal step. P-doping into the NiS bulk is carried out through a simple hydrothermal process as well. Also, HA is activated via carbonization treatment (A-HA) for employing as the negative electrode's active material. The P-doped NiS-NF... 

    Nanosized NiFeSe2/NiCo2O4 hierarchical arrays on Ni foam as an advanced electrocatalyst for hydrogen generation

    , Article Sustainable Energy and Fuels ; Volume 7, Issue 1 , 2022 , Pages 112-121 ; 23984902 (ISSN) Tasviri, M ; Shekarabi, S ; Taherinia, D ; Zare Pour, M. A ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    The rational design of composite catalysts is critically essential for electrochemical water splitting. Here, we report on a novel hierarchical composite that comprises NiFeSe2 nanoparticles and NiCo2O4 nanoflakes supported on nickel foam (NF) as an efficient electrocatalyst for the hydrogen evolution reaction (HER). The conjunction of the NiFeSe2 nanoparticles and NiCo2O4 nanoflakes introduces a new synergistic effect for the HER, resulting in an improved NiCo2O4 catalyst. The as-prepared NiFeSe2/NiCo2O4/NF electrode exhibited an enhanced HER activity, with a low overpotential of 83 mV at a current density of 10 mA cm−2, a low Tafel slope of 45 mV dec−1, and an excellent long-term... 

    Hierarchical nickel-cobalt sulfide/niobium pentoxide decorated green carbon spheres toward efficient energy storage

    , Article Sustainable Energy and Fuels ; Volume 6, Issue 12 , 2022 , Pages 3042-3055 ; 23984902 (ISSN) Hekmat, F ; Shahi, M ; Dubal, D. P ; Shahrokhian, S ; Sharif University of Technology
    Royal Society of Chemistry  2022
    Abstract
    Progression in the renewable energy field is tied to the development of high-performance energy storage devices with superior power and energy densities. Herein, an innovative material design was employed to prepare binder-free nickel-cobalt sulfide (NCS) on niobium pentoxide (Nb2O5)-decorated carbon spheres (CSs). Initially, CSs were directly grown on nickel foam (NF) via a hydrothermal carbonization approach. Core/shell-like NCS@Nb2O5@CS-NF was then synthesized through a hydrothermal process, followed by an electrodeposition process. When employed as an electrode material, NCS@Nb2O5@CS-NF achieved an excellent volumetric capacity of 9300 C L−1 at a current density of 18 A L−1. Later, an... 

    Three-dimensional hybrid of iron–titanium mixed oxide/nitrogen-doped graphene on Ni foam as a superior electrocatalyst for oxygen evolution reaction

    , Article Journal of Colloid and Interface Science ; Volume 563 , 15 March , 2020 , Pages 241-251 Mousavi, D. S ; Asen, P ; Shahrokhian, S ; Irajizad, A ; Sharif University of Technology
    Academic Press Inc  2020
    Abstract
    Growing demands for clean and renewable energy technologies have sparked broad research on the development of highly efficient and stable non-noble metal electrocatalysts for oxygen evolution reaction (OER). In this regard, in the present work a three-dimensional Fe2TiO5/nitrogen-doped graphene (denoted as 3D FTO/NG) hybrid electrocatalyst was synthesized via a facile in-situ process using a hydrothermal method. Structural characterization of the prepared nanocomposite is performed by various techniques e.g. field emission scanning electron microscopy (FE-SEM), atomic force microscopy (AFM) analysis, Fourier transform infrared spectra (FT-IR), X-ray photoelectron spectroscopy spectra (XPS),...