Loading...
Search for: nio
0.009 seconds

    Accelerating the Rijndael algorithm using custom instructions capability of Nios II in ODYSSEY

    , Article Proceedings - 2006 International Conference on Design and Test of Integrated Systems in Nanoscale Technology, IEEE DTIS 2006 ; 2006 , Pages 69-73 ; 0780397266 (ISBN); 9780780397262 (ISBN) Iraji, R ; Hessabi, S ; Moghadam, E. K ; Sharif University of Technology
    IEEE Computer Society  2006
    Abstract
    The ODYSSEY design methodology is an object-oriented design methodology which models a system in terms of its constituting objects and their corresponding method calls. Some of these method calls are implemented in hardware functional units, while others are simply executed by a general-purpose processor. There is a communication overhead because functional units must communicate with each other and with the processor core. In this paper we utilize the custom instructions capability of Nios II processor to enhance the performance of our ASIP. Since these instructions are in the processor itself, there will be no communication overhead for using them. We analyze the performance of the... 

    Electrophoretic deposition of functionally-graded NiO-YSZ composite films

    , Article Journal of the European Ceramic Society ; Volume 33, Issue 10 , 2013 , Pages 1815-1823 ; 09552219 (ISSN) Zarabian, M ; Yar, A. Y ; Vafaeenezhad, S ; Sani, M. A. F ; Simchi, A ; Sharif University of Technology
    2013
    Abstract
    Functionally-graded NiO-8. mol % YSZ composite films were prepared by a controlled voltage-decay electophoretic deposition (EPD) process. The films consisted of three layers with varying NiO concentrations and porosities. Effects of different parameters including the type of the organic media, solid concentration, NiO:YSZ ratio, and iodine on the stability of EPD suspensions and deposition kinetics were studied. A stable NiO-YSZ suspension was attained in isopropanol with NiO-YSZ ratio of 60:40 and iodine concentration of 0.5. mM. The composite film contained varying NiO concentration from 46. wt.% near the substrate to 32. wt.% close to the electrolyte with 42. wt% NiO in the intermediate... 

    Fabrication and Characterization of Anode Supported Micro-tubular Solid Oxide Fuel Cells Prepared by Successive Non-aqueous Electrophoretic Deposition

    , M.Sc. Thesis Sharif University of Technology Keshavarz, Mitra (Author) ; Nemati, Ali (Supervisor) ; Paydar, Mohammad Hossein (Supervisor)
    Abstract
    The commercial breakthrough of micro-tubular solid oxide fuel cells (MT-SOFCs) is still facing so many challenges because of the complexity of their manufacturing process and the high cost associated with them. By deploying electrophoretic deposition as a simple and cost-effective method, the different components of the fuel cells (the anode, electrolyte, and cathode) can deposit on the graphite rod as a sacrificial substrate. The next step is eliminating the sacrificial substrate which will make hollow rods of cell components. The results of this study show that the use of a particular type of pencil lead will have a minimal negative impact on the overall fuel cell performance, leading to a... 

    Two-stage chemical deposition of oxide films

    , Article International Journal of Engineering, Transactions B: Applications ; Volume 21, Issue 1 , 2008 , Pages 65-70 ; 1728-144X (ISSN) Vaezi, M. R ; Sadrnezhaad, S. K ; Sharif University of Technology
    Materials and Energy Research Center  2008
    Abstract
    Two-stage chemical deposition (TSCD) technique is used to produce ZnO, Mn2O3 and NiO films on soda-lime glass (SL-G) from an aqueous solution of zinc, manganese and nickel complex, respectively. The TSCD method enables the deposition of metal oxide thin films with a thickness which can be controlled during the preparation procedure. The ZnO, Mn 2O3 and NiO thin films were polycrystalline films which were adherent well to the substrates. The SEM micrographs clearly indicate that the zinc oxide layer is composed of oval shaped crystallites preferably orientated perpendicular to the surface of the substrate. The Mn 2O3 and NiO layers were closely packed on the substrate. These particles seem to... 

    High-efficiency microwave absorber based on carbon Fiber@La0.7Sr0.3MnO@NiO composite for X-band applications

    , Article Ceramics International ; Volume 47, Issue 14 , 2021 , Pages 20438-20446 ; 02728842 (ISSN) Fang, Y ; Li, H ; Niaz Akhtar,, M ; Shi, L ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    Carbon fiber (CF) as a multifunctional material with superb performance in aviation industry has serious drawback such as impedance mismatch which restricted the capability of using it as microwave absorber materials. In this research, a novel hierarchical carbon fiber@La0.7Sr0.3MnO@NiO (CF/LS/N) composite was facilely and successfully synthesized via sol-gel and subsequent hydrothermal reactions. The structural, morphological, magnetic and electromagnetic behavior of the composite were precisely evaluated via XRD, FESEM, XPS, VSM and VNA analysis. According to the systematic evaluation results, the synergistic positive effect of adding NiO nanoparticles is revealed in improving the... 

    Numerical Simulation and Investigation of Impact of Climate Change on Probability Occurrence of Tropical Cyclone in Sea of Oman and Persian Gulf

    , M.Sc. Thesis Sharif University of Technology Ilami, Dariush (Author) ; Abbaspour Tehrani Fard, Madjid (Supervisor)
    Abstract
    Super cyclone GONU formed on June 2007 has been recognized the strongest tropical cyclone in the North Indian Ocean (NIO). The aim of this study is to numerically simulate the cyclone GONU and its resulting waves in the southern seas of Iran leading to the best parametric model to simulate future occurrence of tropical cyclones (TCs) in the NIO. In this regard, the best track data of the cyclone is extracted from Indian Meteorological Department (IMD). The cyclone GONU wind field is simulated by Young and Sobey, Holland, and Rankin models in order to determine the most appropriate model which is then considered for regenerating cyclonic wind fields over the Makran coastline and the sea of... 

    Electromagnetic performance, optical and physiochemical features of CaTiO3/NiO and SrFe12O19/NiO nanocomposites based bilayer absorber

    , Article Journal of Colloid and Interface Science ; 2021 ; 00219797 (ISSN) Feng, L ; Liu, J ; Huynen, I ; Mahmoud, M. Z ; Niaz Akhtar, M ; Sharif University of Technology
    Academic Press Inc  2021
    Abstract
    Herein, two distinct nanocomposites of CaTiO3 micro-cubes and polygonal SrFe12O19, both decorated with NiO nanoparticles, were successfully synthesized using hydrothermal method. The physico-chemical features of as-prepared samples were evaluated via XRD, FTIR, UV–vis, BET, XPS, FESEM and EDS analysis. Microwave attenuation features of as-prepared single layer absorbers were determined by VNA analysis in 2–18 GHz. Simulation confirmation was checked by preparing a bi-layer samples and evaluating it using VNA analysis after finding the appropriate thickness of each layer. The reflection loss from each single layer samples containing 20 wt% of each CaTiO3/NiO and SrFe12O19/NiO nanocomposites... 

    Syngas production through CO2 reforming of propane over highly active and stable mesoporous NiO-MgO-SiO2 catalysts: Effect of calcination temperature

    , Article Fuel ; Volume 322 , 2022 ; 00162361 (ISSN) Barzegari, F ; Kazemeini, M ; Rezaei, M ; Farhadi, F ; Keshavarz, A. R ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    In this contribution, NiO-MgO-SiO2 catalyst was prepared and calcined at different temperatures of 500, 600, 700 and 800 °C. The resulting samples were characterized by BET-BJH, XRD, TPX, CO-chemisorption, EDS and SEM analyses. These were employed toward syngas production via propane dry reforming. The increment in the calcination temperature from 500 to 800 °C decreased the basicity of the catalysts. In addition, the active surface area and Ni dispersion were gradually declined by increasing the calcination temperature from 600 to 700 °C due to active metal sintering during the activation process. The calcined sample at 600 °C displayed the highest propane and CO2 conversions of 93% and 78%... 

    Electromagnetic performance, optical and physiochemical features of CaTiO3/NiO and SrFe12O19/NiO nanocomposites based bilayer absorber

    , Article Journal of Colloid and Interface Science ; Volume 610 , 2022 , Pages 879-892 ; 00219797 (ISSN) Feng, L ; Liu, J ; Huynen, I ; Mahmoud, M. Z ; Akhtar, M. N ; Sharif University of Technology
    Academic Press Inc  2022
    Abstract
    Herein, two distinct nanocomposites of CaTiO3 micro-cubes and polygonal SrFe12O19, both decorated with NiO nanoparticles, were successfully synthesized using hydrothermal method. The physico-chemical features of as-prepared samples were evaluated via XRD, FTIR, UV–vis, BET, XPS, FESEM and EDS analysis. Microwave attenuation features of as-prepared single layer absorbers were determined by VNA analysis in 2–18 GHz. Simulation confirmation was checked by preparing a bi-layer samples and evaluating it using VNA analysis after finding the appropriate thickness of each layer. The reflection loss from each single layer samples containing 20 wt% of each CaTiO3/NiO and SrFe12O19/NiO nanocomposites... 

    Fabrication of nanoporous nickel oxide by de-zincification of Zn-Ni/(TiO2-nanotubes) for use in electrochemical supercapacitors

    , Article Electrochimica Acta ; Volume 100 , 2013 , Pages 133-139 ; 00134686 (ISSN) Gobal, F ; Faraji, M ; Sharif University of Technology
    2013
    Abstract
    NiO-ZnO/TiO2NTs electrodes were synthesized by the electrodeposition of Zn-Ni onto TiO2 nanotubes, dealloying in a concentrated alkaline solution and finally calcination of the resulting Zn(OH)2-Ni(OH)2/TiO2NTs at 300 C. Morphology of the electrodeposited nanostructures was studied using scanning electron microscopy (SEM) while their electrochemical characterizations were carried out using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS) and galvanostatic charge/discharge procedures. The SEM analysis revealed the nanoporous/cracked structures of the NiO-ZnO/TiO2NTs obtained at the electroplating time of 20 min. The EIS studies showed that nanoporous/cracked structures of... 

    Synthesis of wide band gap nanocrystalline NiO powder via a sonochemical method

    , Article Ultrasonics Sonochemistry ; Volume 19, Issue 4 , 2012 , Pages 841-845 ; 13504177 (ISSN) Mohseni Meybodi, S ; Hosseini, S. A ; Rezaee, M ; Sadrnezhaad, S. K ; Mohammadyani, D ; Sharif University of Technology
    2012
    Abstract
    A sonochemistry-based synthesis method was used to produce nanocrystalline nickel oxide powder with ∼20 nm average crystallite diameter from Ni(OH)2 precursor. Ultrasound waves were applied to the primary solution to intensify the Ni(OH)2 precipitation. Dried precipitates were calcined at 320 °C to form nanocrystalline NiO particles. The morphology of the produced powder was characterized by transmission electron microscopy. Using sonochemical waves resulted in lowering of the size of the nickel oxide crystallites. FT-IR spectroscopy and X-ray diffraction revealed high purity well-crystallized structure of the synthesized powder. Photoluminescence spectroscopy confirmed production of a wide... 

    Direct growth of nickel-cobalt oxide nanosheet arrays on carbon nanotubes integrated with binder-free hydrothermal carbons for fabrication of high performance asymmetric supercapacitors

    , Article Composites Part B: Engineering ; Volume 172 , 2019 , Pages 41-53 ; 13598368 (ISSN) Hekmat, F ; Shahrokhian, S ; Hosseini, H ; Sharif University of Technology
    Elsevier Ltd  2019
    Abstract
    A high performance asymmetric supercapacitor (ASC)has been fabricated by using nickel oxide-cobalt oxide nanosheets (NiO–CoO NSs), which were directly grown on carbon nanotubes (CNTs)and hydrothermal carbon spheres (HTCs)as positive and negative electrodes, respectively. Both electrode materials are binder-free prepared by using a catalytic chemical vapour deposition (CVD)approach followed by a facile hydrothermal method for cathode and a one-step environmental-friendly route called hydrothermal carbonization for anode. Using NiO–CoO NSs@CNTs and HTCs, which were directly grown on Ni foam, not only leads to a very small equivalent series resistance, but also provides an impressive capacitive... 

    Propane steam reforming on mesoporous NiO–MgO–SiO2 catalysts for syngas production: Effect of the MgO/SiO2 molar ratio

    , Article International Journal of Hydrogen Energy ; Volume 45, Issue 46 , 2020 , Pages 24840-24858 Barzegari, F ; Kazemeini, M ; Rezaei, M ; Farhadi, F ; Keshavarz, A ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    In this research, a series of NiO-xMgO-SiO2 catalysts with various MgO/SiO2 molar ratios were prepared via precipitation method followed by a hydrothermal treatment in the presence of PVP as surfactant. The synergic effect between MgO and SiO2 leading to the various characteristic and catalytic performance during propane steam reforming was investigated in detail. The results showed that 15 wt% NiO-0.5MgO–SiO2 catalyst possessed the highest catalytic activity (68.9% conversion for C3H8 at 550 °C) with a negligible amount of carbon formation after 20 h of reaction duration. This superior catalytic performance can be attributed to the enhanced basicity strength along with strong metal-support... 

    Nickel-based nanosheets array as a binder free and highly efficient catalyst for electrochemical hydrogen evolution reaction

    , Article International Journal of Hydrogen Energy ; Volume 47, Issue 82 , 2022 , Pages 34887-34897 ; 03603199 (ISSN) Faraji, H ; Hemmati, K ; Mirabbaszadeh, K ; Sharif University of Technology
    Elsevier Ltd  2022
    Abstract
    Hydrogen technology through water electrolyzer systems has attracted a great attention to overcome the energy crisis. So, rationally designed non-noble metal based-electrocatalysts with high activity and durability can lead to high performance water electrolyzer systems and high purity hydrogen generation. Herein, a facile two-step method: hydrothermal and electrodeposition, respectively, are developed to decorate highly porous three-dimensional binder-free structure NiFeO/NiO nanosheets array on Ni foam (NiFeO/NiO/NF) with robust adhesion as a high-performance electrode for Hydrogen Evolution Reaction (HER). The electrodeposition process applied after the initial hydrothermal process... 

    Effect of rare-earth promoters (Ce, La, Y and Zr) on the catalytic performance of NiO-MgO-SiO2 catalyst in propane dry reforming

    , Article Molecular Catalysis ; Volume 522 , 2022 ; 24688231 (ISSN) Barzegari, F ; Rezaei, M ; Kazemeini, M ; Farhadi, F ; Keshavarz, A. R ; Sharif University of Technology
    Elsevier B.V  2022
    Abstract
    In this contribution, NiO-MgO-SiO2 catalysts containing 3 wt. % of CeO2, La2O3, Y2O3, and Zr2O3 were examined for propane dry reforming at 550-750 °C. The samples were synthesized by a co-precipitation route, followed by a hydrothermal treatment, and characterized by BET, XRD and TPX analyses. The results indicated that the addition of promoters enhanced the metal-support interaction and basic characteristics, while the acidic nature of the promoted catalyst was changed in a different way. The highest propane conversion of 39.6% was observed over Ce-promoter sample, while the un-promoted catalyst possessed a value of 36.8% at 700 °C. Nevertheless, La and Y-promoted catalysts possessed a... 

    Polybutylene terephthalate-nickel oxide nanocomposite as a fiber coating

    , Article Analytica Chimica Acta ; Volume 863, Issue 1 , 2015 , Pages 20-28 ; 00032670 (ISSN) Bagheri, H ; Roostaie, A ; Sharif University of Technology
    Elsevier  2015
    Abstract
    A highly efficient polybutylene terephthalate (PBT)-based nanocomposite containing nickel oxide nanoparticles was synthesized by electrospinning technique and used as a fiber coating for solid phase microextraction. The influential morphological parameters and capability of the prepared nanocomposite including the NiO content, the coating time, the PBT concentration and applied voltage were considered for optimization. The applicability of the synthesized fiber coating was examined by headspace solid phase micro extraction and gas chromatography mass spectrometry detection of some volatile organic compounds in aqueous samples. Among the synthesized nanocomposites and pristine PBT nanofibers,...