Loading...
Search for: nitinol-stent
0.007 seconds

    Effects of Crimping on Mechanical Performance of Nitinol Stent Designed for Femoral Artery: Finite Element Analysis [electronic resource]

    , Article Journal of Materials Engineering and Performance ; November 2013, Volume 22, Issue 11, pp 3228-3236 Nematzadeh, F. (Fardin) ; Sadrnezhaad, K ; Sharif University of Technology
    Abstract
    Nitinol stents are used to minimize improper dynamic behavior, low twistability, and inadequate radial mechanical strength of femoral artery stents. In this study, finite element method is used to investigate the effect of crimping and Austenite finish temperature (A f) of Nitinol on mechanical performance of Z-shaped open-cell femoral stent under crimping conditions. Results show that low A f Nitinol has better mechanical and clinical performance due to small chronic outward force, large radial resistive force, and appropriate superelastic behavior  

    Finite element analysis of mechanical performance of nitinol biliary stent: effect of material properties

    , Article Materials Research Innovations ; Volume 17, Issue SUPPL 2 , December , 2013 , Pages S53-S59 ; 14328917 (ISSN) Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    Abstract
    Stent implantation has been regarded as a major strategy to solve gastrointestinal diseases such as biliary obstruction during the last decade. The application of nitinol superelastic stents has been recently considered for minimising such problems as restenosis after stent implantation, the ability to low stent twist, unsuitable dynamic behaviour and inadequate strength radial of stent. In the present article, the effects of material properties on mechanical performance of Z shaped nitinol wire stent under crushing test for clinical applications are studied by finite element modelling. Nitinol stent shows better mechanical and clinical performance after applying 90% crushing, less chronic... 

    Effects of design parameters and A f temperature on superelastic behaviour of Nitinol stent for application in biliary duct: finite element analysis [electronic resource]

    , Article Materials Technology: Advanced Performance Materials ; Vol. 29, No. 2, 2014, 65-75 Nematzadeh, F. (Fardin) ; Sadrnezhaad, K ; Sharif University of Technology
    Abstract
    For more than a decade, stent implantation has been strategically used for solving gastrointestinal dilemmas such as biliary stenosis. Predicaments like insufficient radial strength, low twisting ability, inappropriate dynamic behaviour and restenosis are expected to be solved by the introduction of new designs. Superelastic Nitinol stent is an interesting alternative for minimising these tight spots. The application of finite element method to predict metallurgical and geometric behaviour of superelastic Nitinol stents for biliary duct dilatation is supported by conventional crimp tests. Model calculations show that all stents encounter the highest stress in their intersegment curvature.... 

    Effect of material properties on the mechanical performance of nitinol esophageal stent: finite element analysis [electronic resource]

    , Article Materials Science Forum ; Volumes 773 - 774, 2014, 9-17 Nematzadeh, F. (Fardin) ; Sadrnezhaad, K ; Kokabi, H. A ; Razani, M ; Mohagheghi, A. H ; Sharif University of Technology
    Abstract
    Stent placement has been a main approach to treat gastrointestinal diseases during past decade. Nitinol superelastic stents have been considered as a solution to such difficulties as restenosis after implantation, low twisting ability, inadequate radial mechanical strength and inappropriate dynamic behaviors associated with the ducts. In this paper, effects of Af temperatures on mechanical performance of z-shaped Nitinol wire stent under crimping test for clinical applications are investigated by finite element simulation. Having 60% crimping and high radial resistive strength, favorable superelastic behaviors are attained at Af temperature of 22°C. The performance of the stent is seen to be... 

    Effects of the ageing treatment on the superelastic behavior of a nitinol stent for an application in the esophageal duct: A finite-element analysis

    , Article Materiali in Tehnologije ; Volume 47, Issue 4 , 2013 , Pages 453-459 ; 15802949 (ISSN) Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    The effects of design parameters and material properties obtained with the ageing treatment on the mechanical performance of a z-shaped esophageal-duct nitinol wire stent under the crushing tests for clinical applications are investigated with a finite-element simulation. With 90 % crushing, low chronic outward force, high radial resistive strength and favorable superelastic behavior are attained at the segment angle of 65° and the Af temperature of 24 °C. The performance of the stent is seen to drastically vary with a change of only 1° in the segment angle  

    Effects of crimping on mechanical performance of nitinol stent designed for femoral artery: Finite element analysis

    , Article Journal of Materials Engineering and Performance ; Volume 22, Issue 11 , 2013 , Pages 3228-3236 ; 10599495 (ISSN) Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    2013
    Abstract
    Nitinol stents are used to minimize improper dynamic behavior, low twistability, and inadequate radial mechanical strength of femoral artery stents. In this study, finite element method is used to investigate the effect of crimping and Austenite finish temperature (A f) of Nitinol on mechanical performance of Z-shaped open-cell femoral stent under crimping conditions. Results show that low A f Nitinol has better mechanical and clinical performance due to small chronic outward force, large radial resistive force, and appropriate superelastic behavior  

    Effects of material properties on mechanical performance of Nitinol stent designed for femoral artery: Finite element analysis

    , Article Scientia Iranica ; Volume 19, Issue 6 , December , 2012 , Pages 1564-1571 ; 10263098 (ISSN) Nematzadeh, F ; Sadrnezhaad, S. K ; Sharif University of Technology
    2012
    Abstract
    The Finite element method was used for evaluation of the effects of material properties on the mechanical performance of the new geometry designed for the Z-shaped open-cell femoral artery self-expanding stent, made of Nitinol wire, by application of crushing force. The behavior of the stents, having two sets of properties, was compared. The stents with higher Af temperature show better clinical behavior due to lower chronic outward force, higher radial resistive strength and more suitable superelastic behavior. Model calculations show that a large change of Af temperature could exert a substantial effect on the practical performance of the stent