Loading...
Search for: nitrogen-doped-carbon
0.006 seconds

    Novel synthesis route for preparation of porous nitrogen-doped carbons from lignocellulosic wastes for high performance supercapacitors

    , Article Journal of Alloys and Compounds ; Volume 827 , 2020 Pourjavadi, A ; Abdolmaleki, H ; Doroudian, M ; Hosseini, S. H ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    Porous nitrogen-doped carbons derived from biomass wastes are considered as promising materials for energy storage devices. Herein, a novel and scalable synthesis route for preparation of these materials from sugarcane bagasse waste is demonstrated. The synthesis process includes a hydrogel intermediate in which delignified bagasse and polyacrylamide networks are interlaced in molecular scale and calcium acetate serves as a hard template within the polymeric chains. After pre-carbonization and chemical activation of the hydrogel, porous nitrogen-doped carbon with high surface area of 1834.3 m2 g−1 and considerable pore volume of 1.03 cm3 g−1 was obtained with nitrogen and oxygen contents of... 

    Synthesis of Porous Nitrogen-Doped Carbon materials from Sugarcane Bagasse Wastes and Investigation of its Applications

    , M.Sc. Thesis Sharif University of Technology Abdolmaleki, Hamed (Author) ; Pourjavadi, Ali (Supervisor)
    Abstract
    Reprocessing of different industrial and agricultural wastes become very Important in today’s world because it reduces the environmental pollution arising from waste accumulation as well as providing cheap and sustainable raw material for industries.Among different wastes, sugarcane bagasse is produced in large quantities in Iran specially in Khuzestan province. Bagasse is mainly consists of 3 natural polymers;cellulose, hemicellulose and lignin and can be used for production of chipboard and MDFs, activated carbon, bioethanol and acid citric The purpose of this research is the synthesis of porous nitrogen-doped carbon materials from bagasse wastes and investigate the use of these compounds... 

    Nitrogen-doped carbon nanotubes for heat transfer applications: Enhancement of conduction and convection properties of water/N-CNT nanofluid

    , Article Journal of Thermal Analysis and Calorimetry ; Volume 138, Issue 1 , 2019 , Pages 69-79 ; 13886150 (ISSN) Bazmi, M ; Askari, S ; Ghasemy, E ; Rashidi, A ; Ettefaghi, E ; Sharif University of Technology
    Springer Netherlands  2019
    Abstract
    In this research, it is aimed to enhance the heat transfer properties of the carbon nanotubes through nitrogen doping. To this end, nitrogen-doped multiwall carbon nanotubes (N-CNTs) were synthesized via chemical vapor deposition method. For supplying carbon and nitrogen during the synthesis of N-CNTs, camphor and urea were used, respectively, at 1000 °C over Co–Mo/MgO nanocatalyst in a hydrogen atmosphere. N-CNTs with three different nitrogen loadings of 0.56, 0.98, and 1.38 mass% were synthesized, after which, water/N-CNT nanofluids of these three samples with concentrations of 0.1, 0.2, and 0.5 mass% were prepared. To obtain a stable nanofluid, N-CNTs were functionalized by nitric acid... 

    N-doped CNT nanocatalyst prepared from camphor and urea for gas phase desulfurization: experimental and DFT study

    , Article Journal of the Taiwan Institute of Chemical Engineers ; Volume 85 , April , 2018 , Pages 121-131 ; 18761070 (ISSN) Ghasemy, E ; Banna Motejadded, H ; Rashidi, A ; Hamzehlouyan, T ; Yousefian, Z
    Taiwan Institute of Chemical Engineers  2018
    Abstract
    In the present work, mesoporous nitrogen-doped carbon nanotubes (N-CNTs) were synthesized by using a low-cost and unique set of precursors (camphor and urea). The CVD method at 1000 °C was used with different camphor/urea ratios, and Co-Mo/MgO nanocatalyst was utilized as growth catalyst. Application of mesoporous N-CNTs in selective oxidation of H2S was studied experimentally and N-CNTs interactions with H2S was also investigated using DFT calculations. The as-synthesized N-CNTs were characterized using FTIR, FE-SEM, elemental analysis, X-ray diffraction (XRD), XPS and nitrogen adsorption/desorption. The N-CNT2 sample with urea to camphor ratio (U/C) of 1 showed the highest sulfur yield at... 

    Enhancement of electricity generation by a microbial fuel cell using a highly active non-precious-metal nitrogen-doped carbon composite catalyst cathode

    , Article Energy and Fuels ; Volume 31, Issue 1 , 2017 , Pages 959-967 ; 08870624 (ISSN) Dong, G. R ; Kariminia, H. R ; Chen, Z. W ; Parker, W ; Pritzker, M. D ; Legge, R. L ; Sharif University of Technology
    American Chemical Society  2017
    Abstract
    As microbial fuel cell (MFC) technology continues to gain momentum toward commercialization, the replacement of traditionally used platinum for oxygen reduction with an inexpensive catalyst becomes more important. A nonprecious nitrogen-doped carbon composite catalyst with previous applications in PEM fuel cells is demonstrated for the first time in a single-chamber air cathode MFC with comparisons to a similar platinum-based MFC. The performance of the MFC is compared with a similar MFC using a platinum catalyst and acetate feed. When the platinum is replaced with the catalyst loaded at the surface of the proton exchange membrane (loading density of 1 mg/cm2), MFC operation outperforms a... 

    Highly uniform molybdenum oxide loaded N-CNT as a remarkably active and selective nanocatalyst for H2S selective oxidation

    , Article Science of the Total Environment ; Volume 711 , 2020 Ghasemy, E ; Emrooz, H. B. M ; Rashidi, A ; Hamzehlouyan, T ; Sharif University of Technology
    Elsevier B.V  2020
    Abstract
    Selective oxidation of H2S to elemental sulfur is a low cost and highly efficient process for sulfur removal from H2S-containing hydrocarbon streams in medium scale (i.e. 0.2–10 ton sulfur/day) for environmental protection and prevention of emitting toxic gases to the atmosphere. In this research, in order to prepare a highly active and selective nanocatalyst for selective oxidation of hydrogen sulfide, for the first time, molybdenum oxides were loaded uniformly over nitrogen- doped carbon nanotubes through incipient wetness impregnation. Different metal loadings including 5, 10, and 15 wt% Mo were considered in the synthesis procedure to achieve the optimized performance and provide...