Loading...
Search for: nodal-expansion-method
0.011 seconds

    Neutron noise simulation using ACNEM in the hexagonal geometry

    , Article Annals of Nuclear Energy ; Volume 113 , 2018 , Pages 246-255 ; 03064549 (ISSN) Hosseini, A ; Vosoughi, N ; Vosoughi, J ; Sharif University of Technology
    Elsevier Ltd  2018
    Abstract
    In the present study, the development of a neutron noise simulator, DYN-ACNEM, using the Average Current Nodal Expansion Method (ACNEM) in 2-G, 2-D hexagonal geometries is reported. In first stage, the static neutron calculation is performed. The neutron/adjoint flux distribution and corresponding eigen-values are calculated using the algorithm developed based on power iteration method by considering the coarse meshes. The results of the static calculation are validated against the well-known IAEA-2D benchmark problem. In the second stage, the dynamic calculation is performed in the frequency domain in which the dimension of the variable space of the noise equations is lower than the time... 

    Reconstruction of neutron flux distribution by nodal synthesis method using online in-core neutron detector readings

    , Article Progress in Nuclear Energy ; 2020 Ramezani, I ; Ghofrani, M. B ; Sharif University of Technology
    Elsevier Ltd  2020
    Abstract
    The safety and optimal performance of nuclear reactors require online monitoring in the core. The present paper describes a method that avoids the solution of the time-dependent neutron diffusion equation, and it uses online readings of the fixed in-core neutron detectors to reconstruct the three-dimensional (3D) neutron flux distribution. The essential idea of the nodal synthesis method is the separation of time and space-dependence of the neutron flux distribution. The time-dependent section of the flux distribution is determined by in-core neutron detector readings, and the space-dependent section is obtained from pre-computed harmonics of the neutron diffusion equation. In online... 

    Neutron Noise Calculation Using High order Nodal Expansion Method

    , M.Sc. Thesis Sharif University of Technology Kolali, Ali (Author) ; Vosoughi, Naser (Supervisor)
    Abstract
    This study consists of two parts: steady state calculations and neutron noise calculations in the frequency domain for two rectangular and hexagonal geometries. In the steady state calculation, the neutron diffusion and its adjoint equations are approximated by two-dimensional coordinates in two-group energy and are solved using the average current nodal expansion method. Then, by considering the node size in the dimensions of a fuel assembly, different orders of flux expansion are investigated. For verification purposes, the calculations have been performed by power iteration method for two test problems of BIBLIS-2D and IAEA-2D. For rectangular geometry with increasing flux expansion order... 

    Online Reconstruction of Neutron Flux Distribution using BNPP Operating Data

    , M.Sc. Thesis Sharif University of Technology Ramezani, Iman (Author) ; Ghofrani, Mohammad Bagher (Supervisor) ; Raji, Mohammad Hossein (Co-Advisor)
    Abstract
    The safety and optimal performance of nuclear reactors require online monitoring in the core. One of the most important requirements of core monitoring is the knowledge at all time of the neutron flux distribution in the core. The present M.Sc thesis describes a method which avoids the solution of time dependent neutron diffusion equation and uses online readings of the fixed in-core neutron detectors to reconstruct the three-dimensional (3D) neutron flux distribution. The essential idea of nodal synthesis method is separation of time and space dependence of the neutron flux distribution. The time dependent section of the flux distribution is determined by neutron detector readings and space... 

    Development of SD-HACNEM neutron noise simulator based on high order nodal expansion method for rectangular geometry

    , Article Annals of Nuclear Energy ; Volume 162 , 2021 ; 03064549 (ISSN) Kolali, A ; Vosoughi, J ; Vosoughi, N ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    In this study, the SD-HACNEM (Sharif Dynamic - High order Average Current Nodal Expansion Method) neutron noise simulator in two energy groups using a second-order flux expansion method for two-dimensional rectangular X Y-geometry has been developed. In the first step, the calculations were performed for the steady state and results of ACNEM (Average Current Nodal Expansion Method) and HACNEM (High order Average Current Nodal Expansion Method) were examined and compared. To solve the problem, the power iteration algorithm has been used to calculate the distribution of neutron flux and neutron multiplication factor by considering the coarse-mesh (each fuel assembly one node). To validate the... 

    Reconstruction of neutron flux distribution by nodal synthesis method using online in-core neutron detector readings

    , Article Progress in Nuclear Energy ; Volume 131 , 2021 ; 01491970 (ISSN) Ramezani, I ; Ghofrani, M. B ; Sharif University of Technology
    Elsevier Ltd  2021
    Abstract
    The safety and optimal performance of nuclear reactors require online monitoring in the core. The present paper describes a method that avoids the solution of the time-dependent neutron diffusion equation, and it uses online readings of the fixed in-core neutron detectors to reconstruct the three-dimensional (3D) neutron flux distribution. The essential idea of the nodal synthesis method is the separation of time and space-dependence of the neutron flux distribution. The time-dependent section of the flux distribution is determined by in-core neutron detector readings, and the space-dependent section is obtained from pre-computed harmonics of the neutron diffusion equation. In online...