Loading...
Search for: nonconvex-optimization
0.011 seconds

    An L1 criterion for dictionary learning by subspace identification

    , Article ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings, 14 March 2010 through 19 March 2010 ; March , 2010 , Pages 5482-5485 ; 15206149 (ISSN) ; 9781424442966 (ISBN) Jaillet, F ; Gribonval, R ; Plumbley, M.D ; Zayyani, H ; Sharif University of Technology
    2010
    Abstract
    We propose an ℓ1 criterion for dictionary learning for sparse signal representation. Instead of directly searching for the dictionary vectors, our dictionary learning approach identifies vectors that are orthogonal to the subspaces in which the training data concentrate. We study conditions on the coefficients of training data that guarantee that ideal normal vectors deduced from the dictionary are local optima of the criterion. We illustrate the behavior of the criterion on a 2D example, showing that the local minima correspond to ideal normal vectors when the number of training data is sufficient. We conclude by describing an algorithm that can be used to optimize the criterion in higher... 

    Successive concave sparsity approximation for compressed sensing

    , Article IEEE Transactions on Signal Processing ; Volume 64, Issue 21 , 2016 , Pages 5657-5671 ; 1053587X (ISSN) Malek Mohammadi, M ; Koochakzadeh, A ; Babaie Zadeh, M ; Jansson, M ; Rojas, C. R ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper, based on a successively accuracy-increasing approximation of the ℓ0 norm, we propose a new algorithm for recovery of sparse vectors from underdetermined measurements. The approximations are realized with a certain class of concave functions that aggressively induce sparsity and their closeness to the ℓ0 norm can be controlled. We prove that the series of the approximations asymptotically coincides with the ℓ1 and ℓ0 norms when the approximation accuracy changes from the worst fitting to the best fitting. When measurements are noise-free, an optimization scheme is proposed that leads to a number of weighted ℓ1 minimization programs, whereas, in the presence of noise, we propose... 

    Non-orthogonal Multiple Access Techniques with Simultanious Wireless Information and Energy Transfer

    , M.Sc. Thesis Sharif University of Technology Eslami Manoochehri, Farzad (Author) ; MirMohseni, Mahtab (Supervisor) ; Nasiri Kenari, Masumeh (Supervisor)
    Abstract
    Non-Orthogonal multiple access (NOMA) has been considered as a promising multiple access technique for the 5th generation (5G) of wireless networks. In contrast to orthogonal multiple access, NOMA supports more than one user in each subchannel and thus, improve spectral efficiency. On the other hand, energy efficiency which is another key consideration in future 5G networks, can be improved by energy harvesting (EH) methods. In the NOMA scheme, the user with the better channel condition performs successive interference cancellation (SIC) to detect the data of the user with the worse channel condition and then subtract it from the received signal to decode its own data. Since the data of the... 

    Over-parameterized Neural Networks: Convergence Analysis and Generalization Bounds

    , M.Sc. Thesis Sharif University of Technology Tinati, Mohammad (Author) ; Maddah Ali, Mohammad Ali (Supervisor) ; Motahari, Abolfazl (Supervisor)
    Abstract
    Despite its extraordinary empirical achievements, the theoretical foundation of modern Machine Learning, and in particular deep neural networks (DNN), is still a mystery. In this thesis, we have studied the effect of optimization algorithms on the generalization properties for shallow neural networks. Particularly, we have focused on the implicit biases these optimization procedures, specifically dropout, deal with. As an example for this implicit bias, classical results had shown that for linear regression, in the interpolation regime, gradient descent, among all the possible solutions, converges to the minimum L2-norm interpolation. Due to the complex nature of the neural networks... 

    Solving of Nonconvex Optimization Problem Using Trust-Region Newton-Conjugate Gradient Method with Strong Second-Order Complexity Guarantees

    , M.Sc. Thesis Sharif University of Technology Javidpanah, Fatemeh (Author) ; Mahdavi Amiri, Nezamoddin (Supervisor)
    Abstract
    Worst-case complexity guarantees for non-convex optimization algorithms is a topic that have received increasing attention. Here , we review trust-region Newton methods recently proposed in the literature . After a slight modification of the main model , two methods are proposed : one of them is based on the exact solution of the sub-problem , and the other is based on the inexact solution of the sub-problem , such as ``trust-region Newton-conjugate gradient " method with the complexity bounds corresponding to the best known bounds for this class of algorithms . We implement the proposed algorithms and test the programs in the Python software environment  

    Interference efficiency: A new concept to analyze the performance of cognitive radio networks

    , Article 2017 IEEE International Conference on Communications Workshops, ICC Workshops 2017, 21 May 2017 through 25 May 2017 ; 2017 , Pages 1105-1110 ; 9781509015252 (ISBN) Mili, M. R ; Musavian, L ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2017
    Abstract
    In this paper, we develop and analyze a novel performance metric, called interference efficiency (IE), that shows the number of transmitted bits per unit of interference energy imposed on the primary users (PUs) in an underlay cognitive radio network (CRN). Specifically, we develop a framework to maximize the IE of a CRN with multiple secondary users (SUs) while satisfying target constraints on the average interference power on PU receiver, total SUs transmit power and minimum ergodic rate for the SUs. In doing so, we formulate a multiobjective optimization problem (MOP), that aims to achieve the maximum ergodic sum rate of multiple SUs and the minimum average interference power on the... 

    Lower-bound solution algorithm for equilibrium signal-setting problem

    , Article Transportation Research Record ; Issue 2085 , 2008 , Pages 104-110 ; 03611981 (ISSN) Sadabadi, K. F ; Zokaei Aashtiani, H ; Haghani, A ; Sharif University of Technology
    2008
    Abstract
    The equilibrium signal-setting problem is stated and subsequently formulated as a continuous equilibrium network design problem. The bilevel formulation is nonconvex and therefore cannot be solved for global optima by using descent solution algorithms. Therefore, a lower bound using a system optimal flow pattern is proposed that will be quite tight in both uncongested and highly congested network traffic situations. A solution algorithm based on the standard steepest-descent method is proposed for the lower-bound problem. Performance of the solution algorithm on a network problem is reported  

    On the optimization of mobile power-controlled cellular networks regarding practical limitations

    , Article 2006 American Control Conference, Minneapolis, MN, 14 June 2006 through 16 June 2006 ; Volume 2006 , 2006 , Pages 6103-6107 ; 07431619 (ISSN); 1424402107 (ISBN); 9781424402106 (ISBN) Sadati, N ; Yousefi, M. I ; Sharif University of Technology
    2006
    Abstract
    In this paper, the intra-cell link adaptation problem is formulated as a constrained nonconvex nondifferentiable optimization problem to maximize the average link throughput while guaranteeing the best possible coverage reliability. We proceed to solve the resulted nonsmooth optimization problem using proximal point bundle method known in nondifferentiable optimization context. For this purpose, we first exploit the problem structure and reduce the original large scale optimization problem to a sequence of one-dimensional problems coordinated by a master program using direct primal decomposition technique. Proximal bundle method with aggregation policy is then adopted in master program to... 

    On the assignability of LTI systems with arbitrary control structures

    , Article International Journal of Control ; 2021 ; 00207179 (ISSN) Babazadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2021
    Abstract
    In this paper, the assignability of linear time-invariant (LTI) systems with respect to arbitrary control structures is addressed. It is well established that the closed-loop spectrum of an LTI system with an arbitrary control structure is confined to the set containing the fixed-modes of the system with respect to that control structure. However, the assignment of the closed-loop spectrum is not merely limited by the existence of fixed-modes in practical scenarios. The pole assignment may require excessive control effort or even become infeasible due to the presence of small perturbations in the system dynamics. To offer more insights in such more realistic scenarios, a continuous measure... 

    Outage-Constrained robust and secure design for downlink rate-splitting UAV networks

    , Article 2021 IEEE International Conference on Communications Workshops, ICC Workshops 2021, 14 June 2021 through 23 June 2021 ; 2021 ; 9781728194417 (ISBN) Bastami, H ; Moradikia, M ; Letafati, M ; Abdelhadi, A ; Behroozi, H ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2021
    Abstract
    Unmanned aerial vehicles (UAVs) are developing rapidly owing to flexible deployment and access services as the air base stations. In this paper, by taking the realistic assumption of imperfect channel state information at transmitter (CSIT), we investigate the robust and secure design of downlink UAV network while considering the worst-case outage constraints due to communication link uncertainties. In our proposed heterogeneous network, comprised of both UAV-cells and macro-users, rate splitting technique is deployed by UAV base-station (UAV-BS) to enhance the system performance in terms of security, power saving, and robustness against imperfect CSIT. Through our proposed design, we... 

    On the assignability of LTI systems with arbitrary control structures

    , Article International Journal of Control ; Volume 95, Issue 8 , 2022 , Pages 2098-2111 ; 00207179 (ISSN) Babazadeh, M ; Sharif University of Technology
    Taylor and Francis Ltd  2022
    Abstract
    In this paper, the assignability of linear time-invariant (LTI) systems with respect to arbitrary control structures is addressed. It is well established that the closed-loop spectrum of an LTI system with an arbitrary control structure is confined to the set containing the fixed-modes of the system with respect to that control structure. However, the assignment of the closed-loop spectrum is not merely limited by the existence of fixed-modes in practical scenarios. The pole assignment may require excessive control effort or even become infeasible due to the presence of small perturbations in the system dynamics. To offer more insights in such more realistic scenarios, a continuous measure... 

    A robust two-degree-of-freedom control strategy for an islanded microgrid

    , Article IEEE Transactions on Power Delivery ; Volume 28, Issue 3 , 2013 , Pages 1339-1347 ; 08858977 (ISSN) Babazadeh, M ; Karimi, H ; Sharif University of Technology
    2013
    Abstract
    This paper presents a new robust control strategy for an islanded microgrid in the presence of load unmodeled dynamics. The microgrid consists of parallel connection of several electronically interfaced distributed generation units and a local load. The load is parametrically uncertain and topologically unknown and, thus, is the source of unmodeled dynamics. The objective is to design a robust controller to regulate the load voltage in the presence of unmodeled dynamics. To achieve the objective, the problem is first characterized by a two-degree-of-freedom (2DOF) feedback-feedforward controller. The 2DOF control design problem is then transformed to a nonconvex optimization problem.... 

    Superstructure optimization in heat exchanger network (HEN) synthesis using modular simulators and a genetic algorithm framework

    , Article Industrial and Engineering Chemistry Research ; Volume 49, Issue 10 , 2010 , Pages 4731-4737 ; 08885885 (ISSN) Lotfi, R ; Boozarjomehry, R. B ; Sharif University of Technology
    2010
    Abstract
    Heat exchanger network synthesis (HENS) is one of the most efficient process integration tools to save energy in chemical plants. In this work, a new optimization framework is proposed for the synthesis of HENS, based on a genetic algorithm (GA) coupled with a commercial process simulator through the ActiveX capability of the simulator. The use of GA provides a robust search in complex and nonconvex spaces of mathematical problems, while the use of a simulator facilitates the formulation of rigorous models for different alternatives. To include the most common heat exchanger structures in the model, a promising superstructure has been used. Allowing nonisothermal mixing of streams in the new... 

    Joint user pairing, subchannel, and power allocation in full-duplex multi-user OFDMA networks

    , Article IEEE Transactions on Wireless Communications ; Volume 15, Issue 12 , 2016 , Pages 8260-8272 ; 15361276 (ISSN) Di, B ; Bayat, S ; Song, L ; Li, Y ; Han, Z ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc 
    Abstract
    In this paper, the resource allocation and scheduling problem for a full-duplex (FD) orthogonal frequency-division multiple-access network is studied where an FD base station simultaneously communicates with multiple pairs of uplink (UL) and downlink (DL) half-duplex (HD) users bidirectionally. In this paper, we aim to maximize the network sum-rate through joint UL and DL user pairing, OFDM subchannel assignment, and power allocation. We formulate the problem as a non-convex optimization problem. The optimal algorithm requires an exhaustive search, which will become prohibitively complicated as the numbers of users and subchannels increase. To tackle this complex problem more efficiently, we... 

    A novel optimization method based on opinion formation in complex networks

    , Article 2016 IEEE International Symposium on Circuits and Systems, ISCAS 2016, 22 May 2016 through 25 May 2016 ; Volume 2016-July , 2016 , Pages 882-885 ; 02714310 (ISSN); 9781479953400 (ISBN) Hamed Moghadam Rafati, H ; Jalili, M ; Yu, X ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2016
    Abstract
    In this paper we introduce a novel population-based binary optimization technique, which works based on consensus of interacting multi-agent systems. The agents, each associated with an opinion vector, are connected through a network. They can influence each other, and thus their opinions can be updated. The agents work collectively with their neighbors to solve an optimization task. Here we consider a specific opinion update rule and various topologies for the connection network. Our experiments on a number of benchmark non-convex cost functions show that ring topology results in the best performance as compared to others. We also compare the performance of the proposed method with a number... 

    Positioning in MIMO radars based on constrained least squares estimation

    , Article IEEE Communications Letters ; Volume 21, Issue 10 , 2017 , Pages 2222-2225 ; 10897798 (ISSN) Amiri, R ; Behnia, F ; Maleki Sadr, M. A ; Sharif University of Technology
    Abstract
    This letter presents a novel solution for the problem of moving target localization in multiple-input multiple-output radar systems. The localization problem is formulated, based on least squares criterion, as a non-convex optimization problem and solved by semidefinite relaxation method. Then, an improvement technique, refining the initial solution by estimating the error terms, is proposed. Numerical simulations demonstrate that the proposed method achieves a significant performance improvement over the state-of-the-art methods. Specifically, the proposed method is shown to be more robust to the noise level compared with the existing algorithms. © 1997-2012 IEEE  

    Iteration PSO with time varying acceleration coefficients for solving non-convex economic dispatch problems

    , Article International Journal of Electrical Power and Energy Systems ; Volume 42, Issue 1 , November , 2012 , Pages 508-516 ; 01420615 (ISSN) Mohammadi Ivatloo, B ; Rabiee, A ; Soroudi, A ; Ehsan, M ; Sharif University of Technology
    2012
    Abstract
    This paper presents a novel heuristic algorithm for solving economic dispatch (ED) problems, by employing iteration particle swarm optimization with time varying acceleration coefficients (IPSO-TVAC) method. Due to the effect of valve-points and prohibited operation zones (POZs) in the generating units' cost functions, ED problem is a non-linear and non-convex optimization problem. The problem even may be more complicated if transmission losses are taken into account. The effectiveness of the proposed method is examined and validated by carrying out extensive tests on three different test systems. Valve-point effects, POZs, ramp-rate constraints and transmission losses are modeled. Numerical...