Loading...
Search for: novel-structures
0.006 seconds

    A novel organic–inorganic hybrid tandem solar cell with inverted structure

    , Article Applied Physics A: Materials Science and Processing ; Volume 123, Issue 4 , 2017 ; 09478396 (ISSN) Bahrami, A ; Faez, R ; Sharif University of Technology
    Springer Verlag  2017
    Abstract
    A novel organic–inorganic hybrid tandem solar cell with inverted structure is proposed. This efficient double-junction hybrid tandem solar cell consists of a single-junction hydrogenated amorphous silicon (a-Si:H) subcell with n-i-p structure as front cell and a P3HT:PCBM organic subcell with inverted structure as back cell. In order to optimize the hybrid tandem cell, we have performed a simulation based on transfer matrix method. We have compared the characteristics of this novel structure with a conventional structure. As a result, a power conversion efficiency (PCE) of 6.1 and 24% improvement compared to the conventional hybrid tandem cell was achieved. We also discuss the high potential... 

    Facile synthesis of CuO@PbS core/shell nanowire arrays

    , Article Materials Letters ; Volume 193 , 2017 , Pages 259-262 ; 0167577X (ISSN) Farshidi, H ; Youzbashi, A. A ; Heidari Saani, M ; Rashidi, A ; Kazemzadeh, A ; Kiani, F ; Sharif University of Technology
    Abstract
    Nanowire arrays of copper oxide were first grown vertically using simple and cost effective thermal oxidation method on a copper foil. Subsequently, in order to deposit and grow PbS nanocyrstalline thin films on CuO NWs by utilizing the chemical bath deposition technique, these arrays were immersed as the substrate in the reaction solution consisting of Pb(NO3)2, (NH2)2CS and NaOH. The final products were characterized in detail by which the formation of uniform, unique arrays of CuO@PbS core–shell NWs was confirmed. Due to the nature of methods employed in synthesis of this hetero structure, the tuning of core and shell size and consequently properties of the novel structure is easily... 

    The most optimal barrier height of InGaN light-emitting diodes

    , Article Applied Physics A: Materials Science and Processing ; Volume 127, Issue 2 , 2021 ; 09478396 (ISSN) Alam Varzaneh Isfahani, M. H ; Faez, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, a novel structure is presented in order to decrease the polarization charges of quantum wells. The main purpose of this design is to make electron and hole wavefunctions closer to each other and to increase overlap integral following an increase of radiative recombination rates and internal quantum efficiency. Furthermore, carriers will be increased and become more balanced and identical which leads to an increase in efficiency of light-emitting diodes. The improvement of radiative recombination rates is studied in new structures. Energy bands diagram, carriers density, current density–voltage, and power density–current density are used to demonstrate the superior performance... 

    The most optimal barrier height of InGaN light-emitting diodes

    , Article Applied Physics A: Materials Science and Processing ; Volume 127, Issue 2 , 2021 ; 09478396 (ISSN) Alam Varzaneh Isfahani, M. H ; Faez, R ; Sharif University of Technology
    Springer Science and Business Media Deutschland GmbH  2021
    Abstract
    In this paper, a novel structure is presented in order to decrease the polarization charges of quantum wells. The main purpose of this design is to make electron and hole wavefunctions closer to each other and to increase overlap integral following an increase of radiative recombination rates and internal quantum efficiency. Furthermore, carriers will be increased and become more balanced and identical which leads to an increase in efficiency of light-emitting diodes. The improvement of radiative recombination rates is studied in new structures. Energy bands diagram, carriers density, current density–voltage, and power density–current density are used to demonstrate the superior performance... 

    Broadband omnidirectional and miniature fold-up discone antenna in VHF/UHF band

    , Article Electromagnetics ; Volume 32, Issue 5 , Jul , 2012 , Pages 266-273 ; 02726343 (ISSN) Javadzadeh, S. M. H ; Karkhaneh, H ; Sadeghpour, T ; Sharif University of Technology
    2012
    Abstract
    In this article, a novel miniature broadband omnidirectional antenna is proposed. This antenna is suitable to use in vehicles, especially in unmanned aerial vehicles, since it will be folded in order to reduce its size when the unmanned aerial vehicle lands. A special kind of wire discone antenna is chosen to achieve all desired goals. Passive broadband impedance matching at the input of the antenna improves the voltage standing-wave ratio. A telescopic fiberglass axis is used in the antenna structure in order to reduce size and increase wind resistance. The assessment of the novel structure in implementing the antenna is confirmed by experimental measurements. The measurement results reveal... 

    Theoretical study of nitrogen monoxide adsorption on small Six (x = 3-5) clusters

    , Article Molecular Physics ; Volume 109, Issue 2 , 2011 , Pages 229-237 ; 00268976 (ISSN) Nahali, M ; Gobal, F ; Sharif University of Technology
    2011
    Abstract
    Theoretical study of nitrogen monoxide adsorption on small Six (x = 3-5) clusters has been carried out using the advanced hybrid meta-density functional method of Truhlar (MPW1B95). MG3 semi-diffuse basis sets were employed to improve the results. The geometry, adsorption energy, natural bond orbital charge, natural population analysis (NPA)-derived spin density and vibrational frequency of NO adsorption on all optimized nanoclusters were investigated. Also using the NPA, we have investigated the change of bond orders through adsorption. It has been found that NO is capable of making n-centre bonds (n = 1-4) from the nitrogen side but bonds to one site from the oxygen end. In the later case... 

    5-6 GHz dual-vector phase shifter in 0.18 μm LID CMOS

    , Article 27th Iranian Conference on Electrical Engineering, ICEE 2019, 30 April 2019 through 2 May 2019 ; 2019 , Pages 82-86 ; 9781728115085 (ISBN) Choopani, A ; Fakharzadeh, M ; Safarian, A ; Sharif University of Technology
    Institute of Electrical and Electronics Engineers Inc  2019
    Abstract
    In this paper, a low power active phase shifter in 0.18 μm CMOS technology, operating from 5 to 6 GHz, for WLAN applications is presented. Design equations for this novel structure, which consists of two current steering stages, transconductance stage and DACs, are derived, thoroughly. This phase shifter has a range of 360° with 5.625° phase resolution. The power consumption is 35 mW. The RMS phase error is only 0.3°. The simulated power gain, input P1dB, and NF are 4 dB, -0.8 dBm and 6 dB, respectively  

    TiO2 nanotubular fibers sensitized with CdS nanoparticles

    , Article EPJ Applied Physics ; Volume 50, Issue 2 , 2010 ; 12860042 (ISSN) Ghadiri, E ; Taghavinia, N ; Aghabozorg, H. R ; Iraji Zad, A ; Sharif University of Technology
    Abstract
    In this study TiO2 nanotubular fibers were prepared and subsequently loaded with CdS nanoparticles to obtain visible light activate nanofibers with modified structure. Preparation of TiO2 fibers was based on templating method and Liquid phase deposition technique (LPD) with cellulose fibers as templates. Using LPD, thickness of the TiO2 layer could be controlled precisely by adjusting the reaction conditions, therefore after removal of the template, the resulting material has a fibrous structure, mimicking the cellulose fibers shape. CdS nanoparticles were synthesized by thermochemical growth method and attached to TiO2 fibers through impregnation method. The pure composite nanofibers were...